

* Corresponding Author

A New Approach to the Quantitative Measurement of Software

Reliability

Abbas Rasoolzadegan*
Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

rasoolzadegan@um.ac.ir

Received: 02/May/2015 Revised: 07/Jun/2015 Accepted: 04/Jul/2015

Abstract
Nowadays software systems have very important role in a lot of sensitive and critical applications. Sometimes a small

error in software could cause financial or even health loss in critical applications. So reliability assurance as a nun-

functional requirement, is very vital. One of the key tasks to ensure error-free operation of the software, is to have a

quantitative measurement of the software reliability. Software reliability engineering is defined as the quantitative study

of the operational behavior of software systems with respect to user requirements concerning reliability. Software

Reliability is defined as the probability of failure-free software operation for a specified period of time in a specified

environment. Quantifying software reliability is increasingly becoming necessary.

We have recently proposed a new approach (referred to as SDAFlex&Rel) to the development of «reliable yet flexible»

software. In this paper, we first present the definitions of a set of key terms that are necessary to communicate with the

scope and contributions of this work. Based on the fact that software reliability is directly proportional to the reliability of

the development approach used, in this paper, a new approach is proposed to quantitatively measure the reliability of the

software developed using SDAFlex&Rel, thereby making precise informal claims on the reliability improvement. The

quantitative results confirm the reliability improvement that is informally promised by SDAFlex&Rel.

Keywords: Reliability; Quantitative Measurement; Reliability Assessment; Fault Prevention; Formal Methods.

1. Introduction

The demand for complex software-hardware systems

has increased more rapidly than the ability to develop

them with highly desired quality [2], [6], [9], [12]. When

the requirements for and dependencies on such systems

increase, the possibility of crises from software failures

also increases. The impact of these failures ranges from

inconvenience (e.g., malfunctions of home appliances) to

economic damage (e.g., interruptions of banking systems)

to loss of life (e.g., failures of flight systems or medical

software).

Software reliability engineering (SRE) is defined as

the quantitative study of the operational behavior of

software-based systems with respect to user requirements

concerning reliability. SRE is centered around a very

important facet of dependability, i.e., reliability. Software

Reliability is defined as the probability of failure-free

software operation for a specified period of time in a

specified environment [1]. Software reliability has to be a

probabilistic measure because the failure process, i.e. the

way faults become active and cause failures, depends on

the input sequence and operation conditions, and those

cannot be predicted with absolute certainty [37-39].

Human behavior introduces uncertainty and hence

probability into software reliability, although software

usually fails in the same way for same operational

conditions and same parameters. An additional reason to

claim a probabilistic measure is that it is usually only

possible to approximate the number of faults of complex

software system.

Many concepts of software reliability can be adapted

from the older and successful techniques of hardware

reliability [40-41]. However, this must be done with care,

since there are some fundamental differences in the nature

of hardware and software, and their failure processes. The

largest part of hardware failures is considered as result

from physical deterioration. Sooner or later, these natural

faults will introduce faults into hardware components and

hence lead to failures. Experience has shown, that these

physical effects are well-described by exponential

equations in the relation to time. Usage commonly

accelerates the reliability decrease, but even unused

hardware deteriorates. Software does not wear outor

deteriorate, i.e., its reliability does not decrease with time.

Moreover, software generally enjoys reliability growth

during testing and operation since software faults can be

detected and removed when software failures occur. On

the other hand, Software may experience reliability

decrease due to abrupt changes of its operational usage or

incorrect modifications to the software. Software is also

continuously modified throughout its life cycle. The

malleability of software makes it inevitable for us to

consider variable failure rates.

Design faults are a different source for failures. They

result mainly from human error in the development

process or maintenance. Design faults will cause a failure

under certain circumstances. The probability of the

Rasoolzadegan, A New Approach to the Quantitative Measurement of Software Reliability

166

activation of a design fault is typically only usage

dependent and time independent. Unlike hardware faults

which are mostly physical faults, software failures are

caused by design faults, which are harder to visualize,

detect, and correct. In the context of software reliability,

the term design refers to all software development steps

from the requirements to implementation [2-3].

Fig. 1. Formal Software Development Process

In contrast to hardware, software can be perfect (i.e.

fault-free). Formal modeling methods (FMMs) are

broadly defined as notations with accurate and

unambiguous semantics. They are supported by various

tools. FMMs mathematically prove the consistency and

completeness of activities during software development.

Such proofs help detect all faults before they turn into

failures. In addition, the correctness insured by proof is

more comprehensive and reliable than the correctness

guaranteed by test. These advantages facilitate the

development of correct and reliable software [3-5].

Fig. 1 illustrates the formal software development

process using FMMs. This process starts with an initial

formal specification, which abstractly states the

stakeholders‟ requirements. Then, the details of design are

added to the initial specification through a gradual process

(), using formal refinement. This process contains

several intermediate artifacts refined by transformations

and continues until producing the final product [6].

FMMs, along with formal refinement and formal

verification techniques prove the correctness of software

throughout the formal software development process. As a

result, the absence of faults is guaranteed. However, lack of

knowledge and high cost restrict their use to the

development of critical and high integrity software. Critical

systems such as spacecraft, aircraft, nuclear power plant

and pacemakers require a high level of reliability in their

operation. Software failures can lead to fatal consequences

in safety-critical systems [4], thereby making it more

important than ever to ensure the reliability of such systems.

The term „safety-critical‟ refers to those software systems

whose failure may lead to loss of life or severe injury. In

other words, safety-critical systems include software whose

failure can lead to a hazardous state.

We have recently proposed a Software Development

Approach (SDA). This approach, referred to as

SDAFlex&Rel in this paper, promises to develop reliable yet

flexible software [7]. In this approach, Object-Z, as a

dominant formal specification language, is used to

formally specify and refine requirements – which, in turn,

prevent and remove probable faults. Formal modeling and

refinement in Object-Z ensure the reliability of software.

So far, many models have been proposed for

quantification of the software reliability. Each of these

models has its advantages and limitations [11-41]. In [43]

we classify different approaches of software reliability

modeling and finally, based on the analysis of the

advantages and limitations, compare different approaches

and mention some challenges and issues.

In this paper, we quantitatively measure the reliability

improvement promised by SDAFlex&Rel. Indeed, the

contribution of this paper is to measure the reliability of

the software developed using SDAFlex&Rel by measuring

the reliability of SDAFlex&Rel because there is a direct

relation between the reliability of software and the

reliability of the corresponding development approach.

The idea behind this work has been inspired by an

existing technique for reliability assessment, i.e., software

metric based reliability analysis, as well as a typical type

of reliability measurement, i.e., prediction when failure

data are not available.

The rest of this paper is organized as follows: Section

two presents the definitions of a set of key terms that are

necessary to communicate with the scope and

contributions of this work. These terms are dependability,

failure, fault, and error. A brief description of the main

approaches to the achievement of reliability, the major

classes of reliability assessment, and the main activities of

reliability measurement are also presented in section two.

The reliability of the software development approach

SDAFlex&Rel is quantitatively measured in section three.

Finally, section four discusses the conclusions.

2. Background

2.1 Dependability

Dependability is defined as the trustworthiness of a

software-hardware system such that reliance can

justifiably be placed on the service it delivers [1-3], [8-9].

The service delivered by a system is its behavior as it is

perceptible by its user(s); a user is another system (human

or physical) interacting with the former. Depending on the

application(s) intended for the system, a different

Journal of Information Systems and Telecommunication, Vol. 3, No. 3, July-September 2015 167

emphasis may be put on the various facets of

dependability, that is, dependability may be viewed

according to different, but complementary, properties,

which enable the attributes of dependability to be defined:

 The readiness for usage leads to availability.

 The continuity of service leads to reliability.

 The nonoccurrence of catastrophic consequences on

the environment leads to safety.

 The nonoccurrence of the unauthorized disclosure of

information leads to confidentiality.

 The nonoccurrence of improper alterations of

information leads to integrity.

 The ability to undergo repairs and evolutions leads to

maintainability.

2.2 Failure

A failure occurs when the user perceives that the

system ceases to deliver the expected service [1]. The

user may choose to identify several severity levels of

failures, such as: catastrophic, major, and minor,

depending on their impacts to the system service. The

definitions of these severity levels vary from system to

system [3].

Failure behavior directly depends on the environment

and the number of faults present in the software during

execution. Let denotes a random variable representing

the system failure time. Failure density () corresponds

to the probability distribution function of . Failure

probability () is the probability that the failure time is

less or equal to time [2], [10]:

 () () ∫ ()

 ()

Reliability () is the probability that the system

delivers the expected services in the time interval:

 () () () ∫ () ()

With respect to the type of hardware faults, hardware

reliability metrics are usually time dependent. Although the

failure behavior of software (design) faults depends on

usage and not directly on time, software reliability is

usually expressed in relation to time, as well. However, it is

possible to define software reliability with respect to other

bases such as software runs. A major advantage of time

dependent software reliability metrics is that they can be

combined with hardware reliability metrics to estimate the

system reliability. Only as intermediate results, some

reliability models use time-independent metrics.

2.3 Fault

A fault is uncovered when either a failure of the

software occurs or an internal error (e.g., an incorrect

state) is detected within the software. The cause of the

failure or the internal error is said to be a fault. It is also

referred as a bug. Software faults arise mostly from

design issues. The source of software faults include:

 Incorrect requirements, even though the

implementation may match them.

 Implementation (software design and coding)

deviating from (correct) requirements.

 Uncontrolled or unexpected changes in operational

usage or incorrect modifications.

In summary, a software failure is an incorrect result

with respect to the specification or an unexpected

software behavior perceived by the user at the boundary

of the software system, while a software fault is the

identified or hypothesized cause of the software failure.

When the distinction between fault and failure is not

critical, defect can be used as a generic term to refer to

either a fault (cause) or a failure (effect).

2.4 Error

The term error has two different meanings [3], [10]:

1. A discrepancy between a computed, observed, or

measured value, or condition and the true,

specified, or theoretically correct value or

condition. Errors occur when some part of the

software produces an undesired state. Examples

include exceptional conditions raised by the

activation of existing software faults and an

incorrect system status due to an unexpected

external interference. This term is especially useful

in fault-tolerant computing to describe an

intermediate stage in-between faults and failures.

2. A human action that results in software containing

a fault. Examples include omission or

misinterpretation of user requirements in a

software specification, and incorrect translation or

omission of a requirement in a software design.

However, this is not a preferred usage, and the

term mistake is used instead to avoid the confusion.

2.5 Approaches to the Achievement of Reliability

The development of a reliable software system calls

for the combined utilization of a set of methods and

techniques which can be classed into [3], [16], [25-30],

[32], [34], [36]:

 Fault prevention: how to prevent fault occurrence or

introduction. The interactive refinement of the user‟s

system requirement, requirements engineering (RE),

the use of sound design methods, and the

encouragement of writing clear code are the general

approaches to prevent faults in the software. Formal

methods develop and refine requirement

specifications correctly using languages and tools

with sound mathematical bases in order to achieve

the following goals: 1) executable specifications for

systematic and precise evaluation, 2) proof

mechanisms for step-by-step verification using

incremental refinement, and 3) every intermediate

artifact is a subject to mathematical verification for

correctness and appropriateness.

 Fault removal: how to reduce the presence (number

and seriousness) of faults. Fault removal uses

techniques such as testing, inspection, verification,

and validation to track and remove faults in software.

Formal inspection is a practical fault removal

Rasoolzadegan, A New Approach to the Quantitative Measurement of Software Reliability

168

scheme which is widely implemented in industry.

Formal inspection is a rigorous process focused on

finding faults, correcting faults, and verifying the

corrections.

 Fault tolerance: how to ensure a service capable of

fulfilling the system‟s function in the presence of

faults. Software fault tolerance is achieved by design

diversity in which multiple versions of software are

developed. These multiple versions, which are

functionally equivalent yet independent, are applied

in the system to provide ultimate tolerance to

software design faults.

 Fault forecasting: how to estimate the present

number, future incidence, and consequences of faults.

Fault forecasting involves formulation of the

fault/failure relationship, an understanding of the

operational environment, the establishment of

reliability models, the collection of failure data, the

application of reliability models by tools, the

selection of appropriate models, and the analysis and

interpretation of results.

2.6 Reliability assessment

The three major classes of software reliability

assessment are [8-9], [14], [24]:

 Black box reliability analysis: Estimation of the

software reliability based on failure observations

from testing or operation. These approaches are

called black boxapproaches because internal details

of the software are not considered.

 Software metric based reliability analysis:

Reliability evaluation based on the static analysis of

the software (e.g., lines of code, number of

statements, complexity) or its development process

and conditions (e.g., developer experience, applied

testing methods).

 Architecture-based reliability analysis: Evaluation

of the software system reliability from software

component reliabilities and the system architecture

(the way the system is composed out of the

components). These approaches are sometimes

called component-based reliability estimation

(CBRE), or grey or white box approaches.

2.7 Reliability measurement

Measurement of software reliability includes two

types of activities: reliability estimation and reliability

prediction [11], [13]. Estimation determines current

software reliability by applying statistical inference

techniques to failure data obtained during system test or

during system operation. This is a measure regarding the

achieved reliability from the past until the current point.

Its main purpose is to assess the current reliability and

determine whether a reliability model is a good fit in

retrospect. Prediction determines future software

reliability based upon available software metrics and

measures [15]. Depending on the software development

stage, prediction involves different techniques [17-23]:

1. When failure data are available (e.g., software is in

system test or operation stage), the estimation

techniques can be used to parameterize and verify

software reliability models, which can perform

future reliability prediction.

2. When failure data are not available (e.g., software is

in design or implementation stages), the metrics

obtained from the software development process

and the characteristics of the resulting product can

be used to predict reliability of the software.

Data collected during the test phase is often used to

estimate the number of software faults remaining in a

system which in turn often is used as input for reliability

prediction. This estimation can either be done by looking

at the numbers (and the rate) of faults found during

testing or just by looking at the effort that was spent on

testing. The underlying assumption when looking at

testing effort is “more testing leads to higher reliability”

[31], [33], [35].

3. Quantifying the reliability of the software

developed using SDAFlex&Rel

The software development approach SDAFlex&Rel has

recently been proposed to develop reliable yet flexible

software [7]. In SDAFlex&Rel, formal (Object-Z) and semi-

formal (UML) models are transformed into each other

using a set of bidirectional formal rules. In this approach,

Object-Z, as a dominant formal specification language, is

used to formally specify, verify, and refine requirements

to prevent and remove probable faults. As previously

mentioned, fault prevention and fault removal are two

main approaches to the development of reliable software

systems. Therefore, formal modeling, verification, and

refinement in Object-Z ensure the reliability of software.

Visual models (UML diagrams) facilitate the interactions

among stakeholders who are not familiar enough with the

complex mathematical concepts of formal modeling

methods. Applying design patterns to visual models

improves the flexibility of software. The transformation

of formal and visual models into each other through the

iterative and evolutionary process, proposed in [7], helps

develop the software applications that need to be highly

reliable yet flexible. The workflow of SDAFlex&Rel is

illustrated in Fig. 2.

The iterative and evolutionary process illustrated in

Fig. 2 continues until a final product with a desired

quality (in terms of reliability and flexibility) is achieved.

Fig. 3 illustrates the details of an iteration of SDAFlex&Rel

which consists of the following phases:

 Reliability Assurance Phase (RAP) which supports

formal specification and refinement in Object-Z.

 Visualization Phase (VP) which transforms Object-Z

models into UML ones.

 Flexibility Assurance Phase (FAP) which revises

UML models from the viewpoints of design patterns

and polymorphism.

Journal of Information Systems and Telecommunication, Vol. 3, No. 3, July-September 2015 169

 Formalization Phase (FP) which transforms UML

models into Object-Z ones.

In order to assess/measure the reliability of the

software developed using SDAFlex&Rel, the reliability of

SDAFlex&Rel is evaluated because there is a direct relation

between the reliability of software and the reliability of

the corresponding development approach [2-3], [6]. In

other words, software reliability is directly proportional to

the reliability of the development approach used. As

previously mentioned, from the view point of assessment,

such reliability assessment is categorized as software

metric based reliability analysis, and from the viewpoint

of measurement, such reliability measurement is

categorized as prediction when failure data are not

available. According to the details of each iteration in the

proposed approach, the total reliability of SDAFlex&Rel is

calculated as:

Fig. 2. The workflow of SDAFlex&Rel

 ∏∏ ()

 ∏ ()

 ∏∏ ()

 ∏ ()

(3)

 Number of iterations in the development

process proposed by SDAFlex&Rel.

 Number of formal refinement steps during

RAP in the iteration of SDAFlex&Rel.

 Number of revision steps during FAP in the

iteration of SDAFlex&Rel.

 () Reliability of the formal refinement step

in RAP during the iteration.

 () Reliability of the formal transformation

from Object-Z into UML (formalization) in VP.

 () The reliability of the revision step in

FAP during the iteration of SDAFlex&Rel.

 () Reliability of the formal transformation

from UML into Object-Z (visualization) in FP.

 Total reliability of SDAFlex&Rel.

As previously mentioned, contrary to hardware,

software does not wear out or deteriorate, i.e., its

reliability does not decrease with time due to physical

depreciation. However, Software may experience

reliability decrease due to abrupt changes of its

operational usage or incorrect modifications to the

software. Therefore, the reliability of a flexible software

or a flexible software development approach (such as

SDAFlex&Rel) does not decrease with time because

“flexibility” is defined as the ability of a system to

respond to potential internal or external changes affecting

its value delivery, in a timely and cost-effective manner.

In other word, the reliability of software or a software

development approach in the presence of flexibility is

equivalent to (reliability in the absence of time) instead

of () (general definition of reliability presented in

subsection 2.2). According to the fact that the flexibility

of SDAFlex&Rel has been demonstrated in [42], the

reliability of SDAFlex&Rel is calculated regardless of time

as instead of ().

In the current version of SDAFlex&Rel, all activities of

the phases RAP, FP, and VP are performed formally with

sound mathematical bases. The proposed formal

transformation rules make it possible to transform UML

class diagrams and Object-Z specifications into each other

Rasoolzadegan, A New Approach to the Quantitative Measurement of Software Reliability

170

without any fault during the phases FP and VP. Moreover,

formal refinement, along with formal verification

guarantees the correctness of the activities performed

during the phase RAP. As previously mentioned,

formalism ensures the absence of faults. Therefore, the

reliability of each of those activities performed during the

phases RAP, FP, and VP equal 1 (()
 () ()).

However, in the current version of SDAFlex&Rel, during

the phase FAP, designers apply the required design

patterns to the class diagram of the system being

developed without any formal systematic control. This

may cause the syntactic or the semantic structure of the

class diagram to become inconsistent. Therefore, the

reliability of every activity in the phase FAP does not

equal 1 (()). Relation (3) is then

simplified as:

 () () ∏∏ ()

 ()

 ∏∏ ()

 ()

(4)

Fig. 3. A schematic view of an iteration of SDAFlex&Rel

A formal mechanism can be proposed to make the

class diagram of the software being developed be

formally revised when a design pattern is applied to it in

FAP. As a result, applying design patterns to the class

diagram of software not only improves the flexibility of

the software but also preserves the syntactic and the

semantic structure of the class diagram – which, in turn,

leads to consistency preservation during the revision

process of the class diagram in FAP. To do so, a set of

formal rules can be defined using model refactoring based

on graph transformation at the meta-level of the UML

class diagram to make it possible to add/remove/change a

modeling element to/from/in a class diagram without

making its syntax and semantics become inconsistent.

Designers are then allowed to change a class diagram just

using the defined rules in order to revise it based on a

design pattern. Therefore, the reliability of every activity

in the phase FAP will equal 1 (()).

Relation (3) is then simplified further as:

 ∏∏

 (5)

As previously mentioned, the reliability of software

developed using a development approach is directly

proportional to the reliability of the development

approach. Therefore, the reliability of the software

developed using the current version of SDAFlex&Rel is

obtained according to relation (4), but in the future, by

proposing a formal mechanism for supporting the revision

process of the phase FAP, the reliability of the software

increases to 1 according to relation (5).

Generally, a software development process includes

several () activities [6], [44-45]. Based on the

assumption that these activities do not enjoy a sound

mathematical (formal) basis, the reliability of each of

them dose not equal to 1 (()). As a result, the

process reliability can be formulated as:

 ∏ ()

 () (6)

In order to simply compare with

 , relation (4) is reformulated as follows:

 ∏∏ ()

 ∏ (
)

 (7)

Journal of Information Systems and Telecommunication, Vol. 3, No. 3, July-September 2015 171

such that:

 (
)

 ∑

 ,

 ∑

 ∑

 ∑

The following assumptions are made according to

relations (6) and (7):

1. In ()
2. In

 (
)

3. (
) (), because: 1) the input

materials of FAP are correct and fault-free and 2)

During FAP, the input materials are just revised

using design patterns and polymorphism with low

possibility of fault occurrence, and 3) the lack of

semantic inconsistency between the input and the

output of the phase FAP is guaranteed by the

existing formal analysis techniques (such as

initialization theorem and precondition investigation)

and the various formal verification mechanisms that

support Object-Z (as illustrated in Fig. 2).

4. ,

With respect to these assumptions, we can conclude that:

∏ (
)∏ () ()

The above-mentioned analysis shows that the

reliability of SDAFlex&Rel is greater than the reliability of a

generic software development process. The main

conclusion is that the more widespread the use of

formalism including formal specifications, refinement,

and verification throughout a software development

process, the more reliable the software development

process will be. Therefore, supposing that some () of

the activities of the software development process

 are performed formally, the reliability of

 , previously formulated as relation (6), is

reformulated as relation (9):

 ∏ ()
 = ∏ ()

 ∏ ()

 ()
⇒ ∏ ()

 ∏ ()

 () (9)

Conclusion:

With respect to the fact that the reliability of a

software product is directly proportional to the reliability

of the development approach used, the more reliable the

software development approach, the more reliable the

software product. According to the aforementioned

analyses, the reliability of software developed using

SDAFlex&Rel is greater than the reliability of software

developed using a generic software development process.

4. Conclusions

In this paper, we quantify the reliability improvement

promised by the software development approach

SDAFlex&Rel, which has recently been proposed to develop

reliable yet flexible software. This approach improves

software reliability through preparing the ground for

formal modeling, refinement, and verification– which, in

turn, prevent and remove probable faults. In order to

quantify the reliability of the software developed using

SDAFlex&Rel, the reliability of SDAFlex&Rel is quantitatively

measured because there is a direct relation between the

reliability of software and the reliability of the

corresponding development approach. In other words,

software reliability is directly proportional to the

reliability of the development approach used. Such

reliability assessment is categorized as software metric

based reliability analysis. The results confirm the

promised reliability improvement

References
[1] ISO/IEC/IEEE, Systems and software engineering –

Vocabulary, ISO/IEC/IEEE 24765:2010.

[2] H. Pham, System Software Reliability, Springer, 1st ed., 2007.

[3] M. R. Lyu, Handbook of Software Reliability Engineering,

McGraw-Hill, 1996.

[4] A. Pandit, “A Framework-Based Approach for Reliability

& Quality Assurance of Safety-Critical Software,” Int.

Journal on Computer Science and Eng., vol. 2 (9), pp.

2874-2879, 2010.

[5] H. B. Christensen, Flexible, Reliable Software: Using

Patterns and Agile Development, Chapman and Hall/CRC;

1st ed., 2010.

[6] D. Bjørner, Software Engineering III: Domains,

Requirements, and Software Design, Springer, 2006.

[7] A. Rasoolzadegan, A. Abdollahzadeh, “Reliable yet

Flexible Software through Formal Model Transformation

(Rule Definition),” Journal of Knowledge and Information

Systems (KAIS), vol. 40 (1), 2014.

[8] W. Ecker, W. Müller, Rainer Dömer, Hardware Dependent

Software Principles and Practice, Springer, 2009.

[9] L. I. Millett, Software for Dependable Systems: Sufficient

Evidence?, The National Academies Press, 2007.

[10] International Organization for Standardization, ISO Standard

9126: Software Engineering – Product Quality, parts 1, 2 and

3, Geneve, Switzerland, 2001 (part 1), 2003 (parts 2 and 3).

[11] M. Rahmani, A. Azadmanesh, “Exploitation of

Quantitative Approaches to Software Reliability,” Tech.

Rep. cst-2011-002, Computer Science, University of

Nebraska, Omaha, Dec. 2011.

Rasoolzadegan, A New Approach to the Quantitative Measurement of Software Reliability

172

[12] P.H. Seong, Reliability and Risk Issues in Large Scale

Safety-critical Digital Control Systems, Springer, 1st ed.,

Berlin, Germany, pp. 85–87, 2009.

[13] X. Li, “Software reliability measurement: a survey,” MSc.

Thesis, Dept. Computer Science & Software Engineering,

Concordia University, 2002.

[14] P. C. J. P. K. Kapur, H. Pham, A. Gupta, Software

Reliability Assessment with OR Applications, 1st ed.,

London, England, Springer, 2011.

[15] A. K. Pandey, N.K. Goyal, Early Software Reliability

Prediction: a Fuzzy Logic Approach, Springer, 2013.

[16] S. Yamada, Software reliability modeling Fundamental

and Applications, Japan, Springer, 2014.

[17] Q. P. Hu, Y.-S. Dai, M. Xie, S. H. Ng, “Early software

reliability prediction with extended ANN model,” in30th

Annual International Conference on Computer Software

and Applications, 2006, vol. 2, pp. 234–239, 2006.

[18] S. Mohanta, G. Vinod, A. K. Ghosh, R. Mall, “An

approach for early prediction of software reliability”, ACM

SIGSOFT Softw. Eng. Notes, vol. 35, no. 6, pp. 1–9, 2010.

[19] A. Immonen, E. Niemela, “Survey of reliability and

availability prediction methods from the viewpoint of

software architecture,” Software & System Modeling,

Springer, vol. 7, no. 1, pp. 49-65, Jan 2007.

[20] S. S. Gokhale, K. S. Trivedi, “Analytical models for

architecture-based software reliability prediction: A

unification framework,” Reliab. IEEE Trans., vol. 55, no. 4,

pp. 578–590, 2006.

[21] R.H. Reussner, H.W. Schimidt, I.H. Poernomo, “Reliability

prediction for component-based software architectures,” J.

System Softw., vol. 66, no. 3, pp. 241-252, 2003.

[22] G.N. Rodrigues, D.S. Rosenblum, S. Uchitel, “Using

scenarios to predict the reliability of concurrent

component-based software systems,” in Proceedings of

the8th international conference on Fundamental

Approaches to Software Engineering, pp. 111-126, 2005.

[23] S. S. Gokhale, K. S. Trivedi, “reliability prediction and

sensitivity analysis based on software architecture,” in

Proceedings ofthe 3rd international symposiumon Software

Reliability Engineering, pp. 64-75, 2002.

[24] K. Goševa-Popstojanova, K. S. Trivedi, “Architecture-

based approach to reliability assessment of software

systems,” Journal of Performance Evaluation, Elsevier,

vol. 45, no. 2, pp. 179–204, 2001.

[25] H. A. Stiber, “A family of software reliability growth

models,” in Proceeding of 31th Annual International

Computer Software and Applications Conference, IEEE,

vol. 2, pp. 217-224, July 2007.

[26] H. Pham, “Software reliability and cost models:

Perspectives, comparison, and practice,” Eur. J. Oper. Res.,

vol. 149, no. 3, pp. 475–489, 2003.

[27] A. L. Goel, K. Okumoto, “Time-Dependent Error-

Detection Rate Model for Software Reliability and Other

Performance Measures,” IEEE Transactions on Reliability,

pp. 206 – 211, 2009.

[28] V. Volovoi, “Modeling of System Reliability Using Petri

Nets with Aging Tokens,” J. Reliab. Eng. Syst. Saf., vol. 84,

pp. 149–161, 2004.

[29] M. Xie, K.-L. Poh, Y.-S. Dai, Computing System

Reliability: Models and Analysis, 1st ed., New York, USA:

Springer, 2004.

[30] M. Ohba, “Software reliability analysis models,” IBM J.

Res. Dev., vol. 28, no. 4, pp. 428–443, 1984.

[31] L. K. Singh, A. K. Tripathi, G. Vinod, “Software reliability

early prediction in architectural design phase: Overview

and Limitations,” J. Softw. Eng. Appl., vol. 4, p. 181, 2011.

[32] W.L. Wang, M.H. Chen, “Heterogeneous software

reliability modeling,” in Proceedings of 13th International

Symposium on Software Reliability Engineering, pp. 41 –

52, 2002.

[33] R. Rana, M. Staron, C. Berger, J. Hansson, M. Nilsson, F.

Torner, W. Meding, C. Hoglund, “Selecting software

reliability growth models and improving their predictive

accuracy using historical projects data,” System and

Software, Elsevier, vol. 98, pp. 59–78, 2014.

[34] R. Lai, M. Garg, “A Detailed Study of NHPP Software

Reliability Models (Invited Paper),” J. Softw., vol. 7, no. 6,

pp. 1296–1306, Jun. 2012.

[35] K. Goševa-Popstojanova, K. S. Trivedi, “Architecture-

based approaches to software reliability prediction,”

International Journal of Computer Mathematics with

Applications, vol. 46, no. 7, pp. 1023–1036, 2003.

[36] S. S. Gokhale, M.-T. Lyu, “A simulation approach to

structure-based software reliability analysis,” Softw. Eng.

IEEE Trans., vol. 31, no. 8, pp. 643–656, 2005.

[37] K.C. Chiu, Y.S. Huang, T.Z. Lee, “A study of software

reliability growth from the perspective of learning effects,”

International Journal of Reliability Engineering & System

Safety, vol. 93, no. 10, pp. 1410–1421, 2008.

[38] K. M. Cheol, J. S. Cheol, J. J. Ha, “Possibilities and

Limitations of Applying Software Reliability Growth Models

to Safety- Critical Software,” Journal of Nuclear Engineering

and Technology, vol. 39, no. 2, pp. 129–132, 2007.

[39] V. Almering, M. Van Genuchten, G. Cloudt, P. J. M.

Sonnemans, “Using software reliability growth models in

practice,” Software, IEEE, vol. 24, no. 6, pp. 82–88, 2007.

[40] B. Cukic, E. Gunel, H. Singh, G. U. O. Lan, “The theory of

software reliability corroboration,” IEICE Trans. Inf. Syst.,

vol. 86, no. 10, pp. 2121–2129, 2003.

[41] K. Sharma, R. Garg, C. K. Nagpal, R. K. Garg, “Selection

of Optimal Software Reliability Growth Models Using a

Distance Based Approach,” IEEE Transactions on

Reliability, pp. 266–276, 2010.

[42] A. Rasoolzadegan, “A New Approach to the Quantitative

Measurement of Software Flexibility,” Journal of Soft

Computing and Information Technology, submitted, to be

evaluated.

[43] M. Hashemi, Z. Ghavidel, A. Rasoolzadegan, “A

Systematic Literature Review on Software Reliability

Modeling,” Journal of Modeling in Engineering, submitted,

to be evaluated.

[44] R. S. Pressman, Software Engineering-A Practitioner’s

Approach-Required, 7th ed. McGraw Hill, 2009.

[45] I. Sommerville, Software Engineering, 9th ed. Addison

Wesley, 2011.

Abbas Rasoolzadegan has received his B.Sc. degree in
Software Engineering from Air Force University in 2004, Tehran,
Iran. He has also received M.Sc. and Ph.D. degrees in Software
Engineering from Amirkabir University of Technology, Tehran,
Iran, respectively in 2007 and 2013. During his Ph.D., he has
worked on formal software engineering and model transformation.
He is currently an assistant professor in the Computer
Engineering Department of Ferdowsi University of Mashhad. His
main research focus is on software quality engineering, model
transformation, testing, and design patterns.

