

* Corresponding Author

Design, Implementation and Evaluation of Multi-terminal Binary

Decision Diagram based Binary Fuzzy Relations

Hamid Alavi Toussi
Department of Computer Science, Aarhus University, Aarhus, Denmark

hamid@cs.au.dk

Bahram Sadeghi Bigham*
Department of Computer Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran

b_sadeghi_b@iasbs.ac.ir

Received: 25/Jan/2015 Revised: 16/Mar/2015 Accepted: 02/Feb/2016

Abstract
Elimination of redundancies in the memory representation is necessary for fast and efficient analysis of large sets of

fuzzy data. In this work, we use MTBDDs as the underlying data-structure to represent fuzzy sets and binary fuzzy

relations. This leads to elimination of redundancies in the representation, less computations, and faster analyses. We also

extended a BDD package (BuDDy) to support MTBDDs in general and fuzzy sets and relations in particular.

Representation and manipulation of MTBDD based fuzzy sets and binary fuzzy relations are described in this paper. These

include design and implementation of different fuzzy operations such as max, min and max-min composition. In particular,

an efficient algorithm for computing max-min composition is presented. Effectiveness of our MTBDD based

implementation is shown by applying it on fuzzy connectedness and image segmentation problem. Compared to a base

implementation, the running time of the MTBDD based implementation was faster (in our test cases) by a factor ranging

from 2 to 27. Also, when the MTBDD based data-structure was employed, the memory needed to represent the final results

was improved by a factor ranging from 37.9 to 265.5. We also describe our base implementation which is based on matrices.

Keywords: Boolean Functions; BDD; MTBDD; Binary Fuzzy Relations; Fuzzy Connectedness; Image Segmentation.

1. Introduction

ROBDDs have been used in hardware community for

model checking and circuit verification [1]. It has a

variety of applications in other areas as well. For example,

it is used in compiler community for efficient points-to

analysis. In points-to analysis, it is either used as a

compact representation of large sets (points-to sets in this

case) [24,25,11] or, the whole analysis is encoded as

Boolean functions (or relations) and performed by using

Boolean operators (BDD is compact representation for a

Boolean function) [2,3,4]. It is also used in image

processing [5,6].

Efficient representation of fuzzy sets and relations can

be of great importance for analysing large sets of fuzzy

data. In this work, design and implementation of a

MTBDD based data-structure for representing fuzzy sets

and binary fuzzy relations is investigated. Our main idea

is to use MTBDDs [7] as the underlying data-structure.

MTBDDs have been used to represent arrays and

graphs [7,8]. Clark et al. discussed representation of 2-

dimensional arrays and vectors by using MTBDDs.

However, they did not provide any implementation. Also

they used shadow nodes to simplify their algorithms. Our

idea is incorporated into a modern BDD library (BuDDy

[9]) without shadow nodes. Shadow nodes increase the

size of MTBDDs and thus make the implementation less

efficient. Instead, level attribute already presented in the

BDD library, is used.

R. Iris Bahar used MTBDDs to perform matrix

multiplication and also solve all pairs shortest paths

problem [8]. D. Yu. Bugaychenko and I. P. Soloviev

proposed MRBDD (Multi-root decision diagram) data-

structure to represent integer functions. In their

representation, a finite-valued function is represented by a

list of k different ROBDDs (or k roots as they suggested)

thus an assignment maps to a binary string of 0s and 1s of

length k instead of just a 0 or 1. The resulted binary string

should be decoded to a certain value. This value is the

output of the function for the assignment. The list of

ROBDDs which constitute the MRBDD share isomorphic

sub-graphs (every sub-graph is also a ROBDD) [12].

In our implementation, because of the way that

BuDDy allocates nodes, no two isomorphic ROBDD is

ever allocated twice so our work does not just share sub-

graphs among a set of ROBDDs belonging to a single

MRBDD but among all ROBDDs in memory. This is also

discussed in Section 2.2. Generally speaking, sharing is

more pervasive in MRBDDs compared to MTBDDs since

there are just two terminals instead of a set of terminals.

However, implementation of operations on MTBDDs is

straightforward because terminals are shown explicitly.

This is not the case with MRBDD and for any operation,

a correspondence between operation on output values and

equivalent operation on binary encoding of the output

values must be defined. Summation and multiplication on

matrices which are represented by MRBDDs are

explained in [12].

Alavi Toussi & Sadeghi Bigham, Design, Implementation and Evaluation of Multi-terminal Binary Decision Diagram …

118

We have evaluated our data-structure by solving fuzzy

connectedness over different binary fuzzy relations. These

relations are obtained from different images. Results are

compared with a base implementation which uses 2-

dimensional arrays to represent binary fuzzy relations.

MTBDD based implementation was 18 – 27× faster when

number of distinct membership values that can appear in

relations is limited to 11 values. In all cases we have far

better memory consumption when MTBDD based

implementation is used. See Section 6 for more detail.

Our major contributions in this work are:

 Describing representation and manipulation of fuzzy

sets and binary fuzzy relations based on MTBDDs

 Extending BuDDy library to support MTBDDs in general

and fuzzy sets and binary fuzzy relations in particular

 Evaluation of our implementation by solving fuzzy

connectedness problem

An introduction to ROBDDs, BuDDy and MTBDDs

comes in Section 2. The way that BuDDy is extended is

discussed in Section 3. Representation and manipulation

of MTBDD based fuzzy sets and binary fuzzy relations

are discussed in Sections 4 and 5. The empirical

evaluation is given in Section 6 and finally, in Conclusion,

we discuss possible future directions. A draft version of

this work has been published in arXiv [23].

2. Background

2.1 Binary Decision Diagrams

BDD is a data structure for representing Boolean

functions compactly. A completely unreduced BDD is

shown in Figure 1 which represents the Boolean function

f = x1 .x2 .x3 + x1 . x2 .x3 + x1 .x2 .x3. Behind some of

the nodes, their associated functions are presented.

The representation which is shown in Figure 1 is

canonical. However, it is completely inefficient since it

takes () space to represent a Boolean function with n

variables in memory. ROBDD (or BDD for short) tries to

address this problem by eliminating redundancies in

unreduced BDDs. For eliminating redundancies and

having a canonical representation, following two

constraints should be always satisfied in any ROBDD:

1. A ROBDD should be ordered, that is, variables

should respect a given total order on any path in a

ROBDD. 2. A ROBDD should be reduced which means

that there are no two sub-graphs in a ROBDD that are

isomorphic and also for any node in a ROBDD its low-

child should be different from its high-child.

Note that within every node in a ROBDD, level, a

pointer to its low child, and a pointer to its high child are

saved. Every node of a ROBDD which is also a ROBDD

can be identified uniquely by a triple (level, low, high).

Figure 2 shows the same Boolean function as in Figure 1

but in reduced form. We can also see this BDD and its

associated Boolean function as a set which contains 011,

101 and 111 strings.

It is very common to use the term BDD to refer to

ROBDD and we follow this practice in the rest of this paper.

Fig. 1. A completely unreduced BDD which represents the Boolean

function f = ¬x1 .x2 .x3 + x1 .¬x2 .x3 + x1 .x2 .x3.

Fig. 2. The reduced version of the BDD previously shown in Figure 1.

2.2 BuDDy

BuDDy [9] is a library for creating and manipulating

BDDs. It is written in C and also offers a C++ interface.

Since we extended this library, it is useful to know some

of its internals which affected our design.

In BuDDy all nodes (BDDs) are stored in an array

which is named bddnodes. Every slot in this array has

four fields namely level, low, high which are used to

identify the BDD stored in the slot, and, the fourth field

hash which is used to make searching the array more

efficient by using hashing.

Every BDD can be uniquely identified by using its

level, low and high attributes. In another word, we can

associate a triple (level, low, high) with every BDD. At

the core of BuDDy is a routine named bdd_makenode

which is used for allocating BDDs. This routine only

creates one entry for every distinct triple in bddnodes

array and if it is asked to create a triple which is already

inserted in bddnodes, it simply returns the index of the

existing entry. This index represents the BDD in BuDDy.

Also, if the triple sent to this routine contains the same

value as its low and high, no new BDD will be allocated

and the low will be returned.

Journal of Information Systems and Telecommunication, Vol. 4, No. 2, April-June 2016 119

In this way all the BDDs are always reduced and share

sub-graphs that are isomorphic. Sub-graphs of any BDD are

BDDs themselves and are allocated only once for any

distinct triple. This brings some of the advantages of

MRBDDs to our implementation. As described in [12],

BDDs which constitute a MRBDD share isomorphic sub-

graphs, but in BuDDy and as a consequence in our

implementation any two BDDs share isomorphic sub-graphs.

2.3 Apply Operation

BDDs represent Boolean functions so one way to

manipulate them is through Boolean operations (or, and,

xor, etc). In general, there is a routine (bdd_apply in

BuDDy) that takes two BDDs (which represent two

Boolean functions) and makes a new BDD out of them by

applying a Boolean operator. For further details see [13, 9].

2.4 Multi-Terminal Binary Decision Diagrams

A Multi-Terminal Binary Decision Diagram (or

MTBDD for short) is a data-structure which has all the

features of BDD and it allows more than two terminals. In

Sections 3, 4 and 5, we explain how we have extended

BuDDy to add support for MTBDDs as well as other

functionalities which were needed.

3. Extending BuDDy to Support MTBDDs

In BuDDy, BDD type is defined as int. The integer

representative of a BDD can be used to index into

bddnodes array and retrieve its root. However, terminals

are not required to be stored in bddnodes array explicitly

since integers zero and one are reserved to show them.

Integers greater than one are used to show non-terminals.

We chose not to define any new type to show

MTBDD and simply used integer as their representative

to comply with existing design. As a result, integers were

also used to show terminals other than zero and one.

However, the routine bdd_makenode can use any slot

with index greater than one in bddnodes array to store a

BDD (a non-terminal) and returns the slot’s index as the

BDD’s representative. Thus using integers greater than

one for showing terminals could introduce new

complexities in this routine. To overcome this problem,

negative integers were used to show terminals other than

zero and one (-1 cannot be used to show a terminal since

it indicates an uninitialized slot in bddnodes). In this way,

all the existing routines continue to work (except

bdd_apply in cases that it encounters terminals other than

zero and one).

The BuDDy library was extended in a generic way

so it can be used in similar scenarios. Major routines

which are added to the library are mtbdd_apply and

mtbdd_maxmin_compose (mmc for short). The former

was added to handle maximum and minimum operators

for MTBDDs, and the latter is simply a new

functionality which was added to do max-min

compositions of two binary fuzzy relations. See

Subsection 5.1 for further detail.

Floating points were not used to show the membership

values since imprecision in floating-points was not

acceptable for us and we would like to have fully

deterministic results. A C struct which has a field of type

Integer is used to represent membership values. For

example, an instance of this struct with an integer set to

25 shows 0.025 when precision of three digits is used. It

may be worth noting that the precision should be known

in advance to interpret a membership value. We used

three different precisions in our benchmarks. Precision of

three digits which can show 1001 different membership

values, precision of two digits which can show 101

different membership values and precision of a single

digit which can show 11 different membership values

(Note that 1 is considered to be a membership value).

4. MTBDDs as Fuzzy Sets

In the MTBDD representation of a fuzzy set, there are

as many terminals as there are different membership

values in the fuzzy set (including zero and one). Different

paths (including those which are reduced or are not

represented explicitly) show different members of the

fuzzy set. The terminal each path ends at, shows its

membership value. In Figure 3, membership value 0.3 is

represented by -3 so the MTBDD shows the fuzzy set

{0.3/0000, 0.3/0001, 0.3/0010, 0.3/0011, 1/0100, 1/0110,

1/1000, 1/1010}. Strings 0000, 0001, 0010, ... correspond

to numbers 0, 1, 2, ... respectively.

Fig. 3. A MTBDD which represents the binary fuzzy relation {1/(1, 1),

0.3/(0, 0)}

4.1 Intersection and Union Operations

Maximum and minimum operators were used as fuzzy

set intersection and fuzzy set union respectively [14]. The

general apply routine which was mentioned in Section 2

takes two BDDs as its operands and another parameter as

its operator, then, it applies the operator to the operands.

A slightly modified apply routine (mtbdd_apply) which

handles MTBDDs and maximum/minimum operators was

added to the BuDDy library. Our implementation can be

easily extended to include other t-norm operators.

Alavi Toussi & Sadeghi Bigham, Design, Implementation and Evaluation of Multi-terminal Binary Decision Diagram …

120

5. MTBDDs as Binary Fuzzy Relations

Any binary fuzzy relation has two domains, two

disjoint sets of BDD variables are used. Every set of BDD

variables is mapped to one of the domains. For example,

if a domain has eight objects, three variables would be

needed to show all its members (i.e.).

In Figure 4, there are two domains and each one has

two objects so all objects can be encoded by using one

variable for each domain. Variable x0 is used to encode

the objects in the first domain and variable y0 is used to

encode objects in the second domain. Suppose that non-

terminal −3 is mapped to 0.3. In this way (0, 1) and (1, 0)

are associated with 0 membership value. (1, 1) is

associated with 1 membership value and (0, 0) is

associated with 0.3 membership value. You can also see it

as the 2-dimensional array:

0.3 0

0 1

Since we implemented an algorithm similar to 4-way

block-multiplication to compute the max-min

composition of two binary fuzzy relations which are

represented as MTBDDs, it is desirable to partition each

relation into four blocks and access each one in constant

time. In order to make this possible, interleaved variable

ordering was used [7]. This means that if variables xi

constitute domain x and variables yi constitute domain y,

the ordering of variables would be x0 , y0 , x1 , y1 , x2 ,

y2 , See Figure 5 for an example. Binary fuzzy

relations can be seen as square matrices of size n × n. In a

binary fuzzy relation A that , an identity matrix

with smallest possible size is attached to A to meet this

requirement. This technique is also used in [7]. This is

working for max-min composition since minimum of zero

and any other membership value is zero (similar to matrix

multiplication and multiplication of zero by other element).

Fig. 4. A MTBDD representing a fuzzy set

Fig. 5. A binary fuzzy relation represented as a MTBDD. Nodes A, B, C

and D show four partitions of this MTBDD. Both B and C correspond to

the same node.

5.1 Max-min Composition

In general max-min composition of two binary fuzzy

relations R1 (D × D) and R2 (D × D) is defined as follows:

 () (() ())

The max-min composition procedure is similar to block

matrix multiplication. A binary fuzzy relation can be viewed

as a 2-dimensional matrix. This matrix is partitioned into

four sub-matrices (blocks) in the procedure (Figure 5).

max-min composition was implemented as a recursive

procedure which is shown in Figure 6. During the recursion,

at each call, parameters of the call (MTBDD a and

MTBDD b) should be interpreted based on the depth of the

recursion which is passed as the third parameter (call_level).

This is because, the partitioning does not create four new

MTBDDs but returns four sub-graphs of the original

MTBDD as its partitions so a hypothetical level (root_level)

is assumed. The mentioned hypothetical level indicates the

smallest possible level of the resulted partitions (Figure 6).

For example, consider the MTBDD shown in Figure 5, four

partitions would be created after partitioning namely A, B,

C and D. The hypothetical root level for these partitions is

two which corresponds to the variable x1. This technique

(introducing and using a hypothetical root level) avoids

creation of new matrices (MTBDDs) and makes the max-

min composition procedure more efficient. In order to

compute the max-min composition of MTBDDs a and b, we

have to call mmc(a, b, 0).

6. Evaluation

To evaluate our representation, we extended the

BuDDy library to represent and manipulate binary fuzzy

relations by using MTBDDs. Also, we implemented

binary fuzzy relations based on two dimensional arrays.

The array implementation was used as a baseline (base

implementation). Images in our input set are obtained

from UIUC image database [15] and The Berkeley

Segmentation Dataset and Benchmark [16].

Journal of Information Systems and Telecommunication, Vol. 4, No. 2, April-June 2016 121

In our experiment, the fuzzy-connectedness problem

is solved for different images in the input set. Results of

these experiments and further details come next.

6.1 Evaluation Results and Further Details

Results are given in tables 2, 3 and 4. Input relations

for our experiments, are affinity relations, which are

created from various images. Affinity relation is a

symmetric and reflexive fuzzy relation which assigns a

membership value to a pair of pixels based on their local

properties [17]. We initialized this relation only for pairs

of pixels which are neighbour in a given image and

membership value for any other pair of pixels in the

image is set to zero. This leads to sparsity of affinity

relations. The following similarity measure which was

used in [18] has been employed to initialize affinity

relations. δ is the largest diff (diff is computed for every

pair of pixels) and show color

intensities associated with c and d pixels respectively:

 () √
 ⁄

 ()
 ()

 ()

Images used for creating affinity relations are shown

in Table 1. The first one is from UIUC image database

[15] and the next three images are obtained from The

Berkeley Segmentation Dataset and Benchmark [16]. The

last image is a synthetic image from reference [18]. All

experiments are run on a machine with 2.8 GHz Intel

CPU and 4 GB of RAM running Fedora 14.

In the rest of this Section, problem of fuzzy-

connectedness is investigated. Input to this algorithm is an

affinity relation which is extracted from an image, and

final output is a relation that assigns a membership value

to every pair of pixels in the image. The output can be

used to create different clusters of pixels [17]. The final

goal of fuzzy connectedness is to calculate FC relation

which is a reflexive, symmetric and transitive relation. It is

basically max-min transitive closure of the initial affinity

relation. The FC relation is a full binary fuzzy relation. It

assigns a membership value to every pair (c, d). This value

is the maximum strength of all possible paths from c to d.

The strength of a path is the smallest membership value

along the path. FC relations are obtained by computing

max-min transitive closure of affinity relations.

We implemented two different versions to compute

the transitive closure. Our base implementation used two

dimensional arrays to represent binary fuzzy relations and,

it employed Floyd-warshall algorithm as shown in Figure

7. n is the number of pixels in the image. c stores the

affinity relation initially and represents fuzzy

connectedness (FC) relation at the end. Our second

implementation used MTBDDs to represent binary fuzzy

relations and, it computed FC relation by using Repeated

Squaring algorithm as shown in Figure 8. Affinity relation

is the input to this algorithm and at the end, res would be

a MTBDD that represent the fuzzy connectedness relation

(FC). Because of the MTBDD special structure we could

not use the Floyd-warshall algorithm in conjunction with

this data-structure efficiently.

Table 2 shows running-times of our base and MTBDD

based programs which compute max-min transitive

closure of affinity relations obtained from our test images.

Three versions are shown in the table. Column base shows

the base implementation and the other two columns under

mtbdd show the MTBDD based implementation with one

and two digits of precision. The MTBDD based

implementation is significantly faster than the base

implementation when precision of one digit is used (it is

18 – 27× faster). Compared to base implementation, using

2-digits precision improved running time in all cases, but

one, which was our smallest image (40 × 27). In this

particular case all running times were under one minute. In

other cases MTBDD based implementation with two digits

precision is faster by a factor ranging from 2 to 7.

When images are larger and their pixels are more

homogeneous, MTBDD based implementation becomes

faster relative to the base implementation. Note that

running-time in base implementation only depends on size

of input image (i.e. number of pixels). In contrast, MTBDD

based implementation’s running-time depend both on size

of image and values stored in every pixel of the image. For

example, running-times for image3 and image4 are the

same when base implementation is used but it takes less

time for MTBDD based implementation to compute the

transitive closure when it takes image4 as input. This is

because image4 leads to MTBDDs which are more compact

(this is described in more detail in the next paragraph).

As described in Section 5, different paths in MTBDD

representation of a relation show different pairs in the

relation. More commonalities among paths lead to more

reductions and, a more compact MTBDD representation

of the relation. Computations on a smaller MTBDD take

less time. Two different images even with the same size

result in different MTBDDs with different sizes. An

image which results in a MTBDD with more

commonalities in its paths occupies less memory and

results in fewer computations in the MTBDD based

solver (Sparsity in input relation and also images with

homogeneous pixels leads to more compact MTBDDs).

In Table 3, number of entries in FC relations, number

of terminals and number of nodes in MTBDD

representation of these relations are shown. Algorithms

which were used to compute FC relations are show in

Figure 7 (base version) and Figure 8 (MTBDD version).

Number of nodes in MTBDD base implementation is

extremely lower than number of entries in base

implementation which leads to a far improved memory

consumption when MTBDDs are used to represent binary

fuzzy relations. Every array entry in base implementation

is three bytes (two bytes for a short integer and one byte

for a flag) and the size of every bddnode is 20 bytes [9].

In Table 4 size of array and MTBDD based representation

of FC relations are shown (in KB). The column size (r)

indicates number of entries in the array representation of

the relation (base implementation), column size (array)

shows the amount of memory allocated for representing

Alavi Toussi & Sadeghi Bigham, Design, Implementation and Evaluation of Multi-terminal Binary Decision Diagram …

122

arrays in the base implementation and, the other two

columns indicate the amount of memory allocated for

representing MTBDDs in the MTBDD based

implementation (precision of one and two digits).

Considering this table, MTBDD based representation

takes 37.9 – 265.5× less memory than the array

representation depending on the input image.

It is also noteworthy that shape and number of nodes

in BDDs (and MTBDDs as well) also depend on variable

ordering beside data they are representing since different

variable ordering leads to different paths with different

degree of sharing. However, a fixed variable ordering is

used in our implementation.

Number of terminals is also shown in Table 3. This

gives the number of distinct (hard) clusterings that can be

obtained from the resulted relation. When number of

terminals is limited to 11 (1-digit precision), it is five or

six and in the other case, when number of terminals is

limited to 101 (2-digit precision), it is usually around 25.

Fig. 6. Max-min composition (mmc) routine in pseudo code. a and b are MTBDDs and callLevel indicates the depth of the recursion.

Fig. 7. Using Floyd-warshall algorithm to compute max-min transitive closure of affinity relation.

Fig. 8. Using MTBDDs and Repeated Squaring algorithm to compute max-min transitive closure of affinity relation.

Journal of Information Systems and Telecommunication, Vol. 4, No. 2, April-June 2016 123

Table 1. Images which are used for creating affinity relations.

Image Image name Size

Image0 80x65

Image1 40x27

Image2 60x40

Image3 90x60

Image4 90x60

Table 2. Running times of Fuzzy Connectedness problem solver for both

base and MTBDD based implementations (in seconds).

Image Base mtbdd 1 mtbdd 2

Image0 3574 134.61 2236

Image1 32.01 1.78 41.90

Image2 350.72 13.88 285.48

Image3 4000 214.64 1898.21

Image4 same as image3 148.95 533.52

Table 3. Number of entries in FC relations and number of nodes which

are allocated to represent the relation in its MTBDD representation

Image Size(r)
mtbdd

terminals 1

mtbdd

terminals 2

Nodes in

mtbdd 1

Nodes in

mtbdd 2

Image0 27040000 6 28 25683 216461

Image1 1166400 6 25 2212 30753

Image2 5760000 5 27 4007 87306

Image3 29160000 5 26 16469 581770

Image4
same as

image3
5 10 34995 57439

Table 4. Size of array and MTBDD representation in KB

Image size(r) size(array) size(mtbdd 1) size(mtbdd 2)

Image0 27040000 81120 513 4329

Image1 1166400 3499 44 615

Image2 5760000 17280 80 1746

Image3 29160000 87480 329 11635

Image4 29160000 87480 699 1148

7. Conclusion

In this work, we designed and implemented a MTBDD

based data-structure to represent fuzzy sets and relations.

Also, the BuDDy library was extended to support

MTBDDs, and it was employed to implement our idea.

Promising results were obtained in evaluation of our

method. In particular, considering the fuzzy connectedness

problem and compared to the base implementation, when

MTBDD based implementation was used, the running-

time was improved by a factor ranging from 2 to 27, and,

when the memory needed to represent final results was

improved by a factor ranging from 37.9 to 265.5.

In the future we would like to apply our data-structure

to other problems in fuzzy systems which involve

manipulating binary fuzzy relations and fuzzy sets,

specially, problems with very large sets of fuzzy data

such as the use of fuzzy sets in data mining, approximate

reasoning and information retrieval based on fuzzy logic

[19, 20, 21, 22].

Extending our current implementation to a framework

for research in fuzzy systems is another direction we

would like to follow. In particular, researchers would be

able to add t-norms operators of their interest, and, design

and run new experiments on top of our framework.

References
[1] E. Clarke, O. Grumberg, and D. Long. “Symbolic Model

Checking for Sequential Circuit Verification.” In IEEE

Transactions on Computer Aided Design, 1994.

[2] Marc Berndl, Ondˇrej Lhot´ak, Feng Qian, Laurie Hendren,

and Navindra Umanee. “Points-to analysis using BDDs.”

In Proceedings of the ACM SIGPLAN 2003 Conference

on Programming Language Design and Inplementation,

2003, pp 103–114.

[3] John Whaley and Monica Lam. “Clonning-based context-

sensitive Pointer Alias analysis using Binary Decision

Diagrams.” In Proceeding of PLDI, 2004.

[4] Ondˇrej Lhot´ak, Stephen Curial, and Jos´e Nelson Amaral.

“Using XBDDs and ZBDDs in points-to analysis.” Software,

Practice and Experience, vol 39, Issue 2, pp 63–188, 2009.

[5] Watis Leelapatra, Kanchana Kanchanasut, and Chidchanok

Lursinsap. “Displacement BDD and geometric

transformations of binary decision diagram encoded

images.” Pattern Recognition Letters, vol 29, Issue 4, pp

438–456, March 2008.

[6] Mike Starkey, Randy Bryant, and Y Bryant. “Using

ordered binary-decision diagrams for compressing images

and image sequences.” Technical report, CMU-CS, 1995.

[7] Edmund M.and Fujita Clarke, M., McGeer, P C., McMillan,

K., Yang, J C-Y, and X Zhao. “Multi-Terminal Binary

Alavi Toussi & Sadeghi Bigham, Design, Implementation and Evaluation of Multi-terminal Binary Decision Diagram …

124

Decision Diagrams: An Efficient Data-Structure for Matrix

Representation.” Formal Methods in System Design, 1997.

[8] R. I. Bahar, E. A. Frohm, C. M. Gaona, E. Macii, A. Pardo,

and F. Somenzi. “Algebraic Decision Diagrams and Their

Applications. Formal Methods in System Design,” 10, 1997.

[9] Jorn Lind-Nielsen. BuDDy library.

http://sourceforge.net/projects/buddy/, 2002.

[10] D. Bugaychenko. “On application of multi-rooted binary

decision diagrams to probabilistic model checking. In

Verification, Model Checking, and Abstract Interpretation,”

pp 104–118. Springer, 2012.

[11] Vaclav Dvorak. “Branching program-based programmable

logic for embedded systems.” In Proceedings of ICONS

2012, pp 109–115. International Academy, Research, and

Industry Association, 2012.

[12] D. Yu. Bugaychenko and I. P. Soloviev. “Application of

multiroot decision diagrams for integer functions.”

MATHEMATICS, vol 43, Issue 2, pp 92–97, 2010.

[13] Randal E. Bryant. “Graph Based Algorithm for Boolean

function manipulation.” In IEEE Transactions on

Computers, 1985.

[14] L. A. Zadeh. “Fuzzy Sets.” Information and Control, pp

338–353, 1965.

[15] Shivani Agarwal. “UIUC Image Database for Car

Detection.” http://cogcomp.cs.illinois.edu/Data/Car/,
April 2002. Accessed: 2012-08-20.

[16] D. Martin, C. Fowlkes, D. Tal, and J. Malik. “A Database of

Human Segmented Natural Images and its Application to

Evaluating Segmentation Algorithms and Measuring

Ecological Statistics.” In Proceeding of 8th International

Conference on Computer Vision, vol 2, pp 416–423, July 2001.

[17] Jayaram K. Udupa and Punam K. Saha. Fuzzy

Connectedness and Image Segmentation. In Proceeding of

the IEEE, vol 91, pp 1649-1669, 2003.

[18] Pedro F. Felzenszwalb. “Efficient Graph-Based Image

Segmentation.” Journal of Computer Vision, vol 59, Issue

2, pp 167-181, 2004.

[19] M. Delgado, N. Mann, M. Martn-Bautista, D. Snchez, and

M. Vila. “Mining fuzzy association rules: An overview.”

Soft Computing for Information Processing and Analysis,

vol 164, pp 351–373, 2005.

[20] Ulrich Bodenhofer, Eyke Hllermeier, Frank Klawonn, and

Rudolf Kruse. “Special issue on soft computing for

information mining.” Soft Computing - A Fusion of

Foundations, Methodologies and Applications, vol 11, pp

397–399, 2007.

[21] Amel Borgi and Herman Akdag. “Knowledge based

supervised fuzzy-classification: An application to image

processing.” Annals of Mathematics and Artificial

Intelligence, vol 32, Issue 1, pp 67–86, 2001.

[22] Ariel Gmez, Carlos Len, Jorge Ropero, Alejandro Carrasco,

and Joaqun Luque. Sabio. “Soft agent for extended

information retrieval. “Applied Artificial Intelligence, vol

27, pp 249–277, 2013.

[23] Hamid A. Toussi and Bahram Sadeghi Bigham, Design,

Implementation and Evaluation of MTBDD based Fuzzy

Sets and Binary Fuzzy Relations, preprint

arXiv:1403.1279 [cs.DS], [Online]. Available:

http://arxiv.org/abs/1403.1279

[24] Hamid A. Toussi and Abbas Rasoolzadegan, “Flow-

sensitive points-to analysis for Java programs using BDDs,”

In Proceeding of 4th International Conference on

Computer and Knowledge Engineering (ICCKE), pp.380-

386, 29-30 Oct. 2014.

[25] Ben Hardekopf and Calvin Lin. “Semi-sparse flow-

sensitive pointer analysis,” In ACM SIGPLAN Notices,

vol. 44, no. 1, pp. 226-238. ACM, 2009.

Hamid Alavi Toussi obtained the M.Sc in Computer Science in
2011 form University of Sistan and Baluchestan, Zahedan, Iran.
He also holds a B.Sc in Computer Engineering (obtained in 2009
from Islamic Azad University of Mashhad, Iran). Currently, he is a
Ph.D student in Computer Science at Aarhus University
(Computer Science department), working on program analysis for
web applications.

Bahram Sadeghi Bigham is an Assistant Professor in Computer
Sciences at the Institute for Advanced Studies in Basic Sciences
(IASBS). His research interests are in the areas of Medical
Applications of AI, Computational Methods, Data Mining, and
Robotics. Prior to arriving at IASBS, Dr. Sadeghi worked as a
Postdoctoral Fellow at the University of Cardiff in the School of
Computer Science. In June 2008, He completed his Ph.D at
Amirkabir University of Technology (Tehran Polytechnic), where
he also completed a M.Sc in 2000. His B.Sc is from University of
Birjand in Mathematics.

http://cogcomp.cs.illinois.edu/Data/Car/

