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Abstract 
Elimination of redundancies in the memory representation is necessary for fast and efficient analysis of large sets of 

fuzzy data. In this work, we use MTBDDs as the underlying data-structure to represent fuzzy sets and binary fuzzy 

relations. This leads to elimination of redundancies in the representation, less computations, and faster analyses. We also 

extended a BDD package (BuDDy) to support MTBDDs in general and fuzzy sets and relations in particular. 

Representation and manipulation of MTBDD based fuzzy sets and binary fuzzy relations are described in this paper. These 

include design and implementation of different fuzzy operations such as max, min and max-min composition. In particular, 

an efficient algorithm for computing max-min composition is presented. Effectiveness of our MTBDD based 

implementation is shown by applying it on fuzzy connectedness and image segmentation problem. Compared to a base 

implementation, the running time of the MTBDD based implementation was faster (in our test cases) by a factor ranging 

from 2 to 27. Also, when the MTBDD based data-structure was employed, the memory needed to represent the final results 

was improved by a factor ranging from 37.9 to 265.5. We also describe our base implementation which is based on matrices. 

 

Keywords: Boolean Functions; BDD; MTBDD; Binary Fuzzy Relations; Fuzzy Connectedness; Image Segmentation. 
 

 

1. Introduction 

ROBDDs have been used in hardware community for 

model checking and circuit verification [1]. It has a 

variety of applications in other areas as well. For example, 

it is used in compiler community for efficient points-to 

analysis. In points-to analysis, it is either used as a 

compact representation of large sets (points-to sets in this 

case) [24,25,11] or, the whole analysis is encoded as 

Boolean functions (or relations) and performed by using 

Boolean operators (BDD is compact representation for a 

Boolean function) [2,3,4]. It is also used in image 

processing [5,6]. 

Efficient representation of fuzzy sets and relations can 

be of great importance for analysing large sets of fuzzy 

data. In this work, design and implementation of a 

MTBDD based data-structure for representing fuzzy sets 

and binary fuzzy relations is investigated. Our main idea 

is to use MTBDDs [7] as the underlying data-structure. 

MTBDDs have been used to represent arrays and 

graphs [7,8]. Clark et al. discussed representation of 2-

dimensional arrays and vectors by using MTBDDs. 

However, they did not provide any implementation. Also 

they used shadow nodes to simplify their algorithms. Our 

idea is incorporated into a modern BDD library (BuDDy 

[9]) without shadow nodes. Shadow nodes increase the 

size of MTBDDs and thus make the implementation less 

efficient. Instead, level attribute already presented in the 

BDD library, is used. 

R. Iris Bahar used MTBDDs to perform matrix 

multiplication and also solve all pairs shortest paths 

problem [8]. D. Yu. Bugaychenko and I. P. Soloviev 

proposed MRBDD (Multi-root decision diagram) data-

structure to represent integer functions. In their 

representation, a finite-valued function is represented by a 

list of k different ROBDDs (or k roots as they suggested) 

thus an assignment maps to a binary string of 0s and 1s of 

length k instead of just a 0 or 1. The resulted binary string 

should be decoded to a certain value. This value is the 

output of the function for the assignment. The list of 

ROBDDs which constitute the MRBDD share isomorphic 

sub-graphs (every sub-graph is also a ROBDD) [12]. 

In our implementation, because of the way that 

BuDDy allocates nodes, no two isomorphic ROBDD is 

ever allocated twice so our work does not just share sub-

graphs among a set of ROBDDs belonging to a single 

MRBDD but among all ROBDDs in memory. This is also 

discussed in Section 2.2. Generally speaking, sharing is 

more pervasive in MRBDDs compared to MTBDDs since 

there are just two terminals instead of a set of terminals. 

However, implementation of operations on MTBDDs is 

straightforward because terminals are shown explicitly. 

This is not the case with MRBDD and for any operation, 

a correspondence between operation on output values and 

equivalent operation on binary encoding of the output 

values must be defined. Summation and multiplication on 

matrices which are represented by MRBDDs are 

explained in [12]. 



 

Alavi Toussi & Sadeghi Bigham, Design, Implementation and Evaluation of Multi-terminal Binary Decision Diagram … 

 

118 

We have evaluated our data-structure by solving fuzzy 

connectedness over different binary fuzzy relations. These 

relations are obtained from different images. Results are 

compared with a base implementation which uses 2-

dimensional arrays to represent binary fuzzy relations. 

MTBDD based implementation was 18 – 27× faster when 

number of distinct membership values that can appear in 

relations is limited to 11 values. In all cases we have far 

better memory consumption when MTBDD based 

implementation is used. See Section 6 for more detail. 

Our major contributions in this work are: 

 Describing representation and manipulation of fuzzy 

sets and binary fuzzy relations based on MTBDDs 

 Extending BuDDy library to support MTBDDs in general 

and fuzzy sets and binary fuzzy relations in particular 

 Evaluation of our implementation by solving fuzzy 

connectedness problem 

An introduction to ROBDDs, BuDDy and MTBDDs 

comes in Section 2. The way that BuDDy is extended is 

discussed in Section 3. Representation and manipulation 

of MTBDD based fuzzy sets and binary fuzzy relations 

are discussed in Sections 4 and 5. The empirical 

evaluation is given in Section 6 and finally, in Conclusion, 

we discuss possible future directions. A draft version of 

this work has been published in arXiv [23]. 

2. Background 

2.1 Binary Decision Diagrams 

BDD is a data structure for representing Boolean 

functions compactly. A completely unreduced BDD is 

shown in Figure 1 which represents the Boolean function 

f = x1 .x2 .x3 + x1 . x2 .x3 + x1 .x2 .x3. Behind some of 

the nodes, their associated functions are presented. 

The representation which is shown in Figure 1 is 

canonical. However, it is completely inefficient since it 

takes  (  ) space to represent a Boolean function with n 

variables in memory. ROBDD (or BDD for short) tries to 

address this problem by eliminating redundancies in 

unreduced BDDs. For eliminating redundancies and 

having a canonical representation, following two 

constraints should be always satisfied in any ROBDD: 

1. A ROBDD should be ordered, that is, variables 

should respect a given total order on any path in a 

ROBDD. 2. A ROBDD should be reduced which means 

that there are no two sub-graphs in a ROBDD that are 

isomorphic and also for any node in a ROBDD its low-

child should be different from its high-child. 

Note that within every node in a ROBDD, level, a 

pointer to its low child, and a pointer to its high child are 

saved. Every node of a ROBDD which is also a ROBDD 

can be identified uniquely by a triple (level, low, high). 

Figure 2 shows the same Boolean function as in Figure 1 

but in reduced form. We can also see this BDD and its 

associated Boolean function as a set which contains 011, 

101 and 111 strings. 

It is very common to use the term BDD to refer to 

ROBDD and we follow this practice in the rest of this paper. 

 

Fig. 1. A completely unreduced BDD which represents the Boolean 

function f = ¬x1 .x2 .x3 + x1 .¬x2 .x3 + x1 .x2 .x3. 

 

Fig. 2. The reduced version of the BDD previously shown in Figure 1. 

2.2 BuDDy 

BuDDy [9] is a library for creating and manipulating 

BDDs. It is written in C and also offers a C++ interface. 

Since we extended this library, it is useful to know some 

of its internals which affected our design.  

In BuDDy all nodes (BDDs) are stored in an array 

which is named bddnodes. Every slot in this array has 

four fields namely level, low, high which are used to 

identify the BDD stored in the slot, and, the fourth field 

hash which is used to make searching the array more 

efficient by using hashing. 

Every BDD can be uniquely identified by using its 

level, low and high attributes. In another word, we can 

associate a triple (level, low, high) with every BDD. At 

the core of BuDDy is a routine named bdd_makenode 

which is used for allocating BDDs. This routine only 

creates one entry for every distinct triple in bddnodes 

array and if it is asked to create a triple which is already 

inserted in bddnodes, it simply returns the index of the 

existing entry. This index represents the BDD in BuDDy. 

Also, if the triple sent to this routine contains the same 

value as its low and high, no new BDD will be allocated 

and the low will be returned. 
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In this way all the BDDs are always reduced and share 

sub-graphs that are isomorphic. Sub-graphs of any BDD are 

BDDs themselves and are allocated only once for any 

distinct triple. This brings some of the advantages of 

MRBDDs to our implementation. As described in [12], 

BDDs which constitute a MRBDD share isomorphic sub-

graphs, but in BuDDy and as a consequence in our 

implementation any two BDDs share isomorphic sub-graphs. 

2.3 Apply Operation 

BDDs represent Boolean functions so one way to 

manipulate them is through Boolean operations (or, and, 

xor, etc). In general, there is a routine (bdd_apply in 

BuDDy) that takes two BDDs (which represent two 

Boolean functions) and makes a new BDD out of them by 

applying a Boolean operator. For further details see [13, 9]. 

2.4 Multi-Terminal Binary Decision Diagrams 

A Multi-Terminal Binary Decision Diagram (or 

MTBDD for short) is a data-structure which has all the 

features of BDD and it allows more than two terminals. In 

Sections 3, 4 and 5, we explain how we have extended 

BuDDy to add support for MTBDDs as well as other 

functionalities which were needed. 

3. Extending BuDDy to Support MTBDDs 

In BuDDy, BDD type is defined as int. The integer 

representative of a BDD can be used to index into 

bddnodes array and retrieve its root. However, terminals 

are not required to be stored in bddnodes array explicitly 

since integers zero and one are reserved to show them. 

Integers greater than one are used to show non-terminals. 

We chose not to define any new type to show 

MTBDD and simply used integer as their representative 

to comply with existing design. As a result, integers were 

also used to show terminals other than zero and one. 

However, the routine bdd_makenode can use any slot 

with index greater than one in bddnodes array to store a 

BDD (a non-terminal) and returns the slot’s index as the 

BDD’s representative. Thus using integers greater than 

one for showing terminals could introduce new 

complexities in this routine. To overcome this problem, 

negative integers were used to show terminals other than 

zero and one (-1 cannot be used to show a terminal since 

it indicates an uninitialized slot in bddnodes). In this way, 

all the existing routines continue to work (except 

bdd_apply in cases that it encounters terminals other than 

zero and one). 

The BuDDy library was extended in a generic way 

so it can be used in similar scenarios. Major routines 

which are added to the library are mtbdd_apply and 

mtbdd_maxmin_compose (mmc for short). The former 

was added to handle maximum and minimum operators 

for MTBDDs, and the latter is simply a new 

functionality which was added to do max-min 

compositions of two binary fuzzy relations. See 

Subsection 5.1 for further detail. 

Floating points were not used to show the membership 

values since imprecision in floating-points was not 

acceptable for us and we would like to have fully 

deterministic results. A C struct which has a field of type 

Integer is used to represent membership values. For 

example, an instance of this struct with an integer set to 

25 shows 0.025 when precision of three digits is used. It 

may be worth noting that the precision should be known 

in advance to interpret a membership value. We used 

three different precisions in our benchmarks. Precision of 

three digits which can show 1001 different membership 

values, precision of two digits which can show 101 

different membership values and precision of a single 

digit which can show 11 different membership values 

(Note that 1 is considered to be a membership value). 

4. MTBDDs as Fuzzy Sets 

In the MTBDD representation of a fuzzy set, there are 

as many terminals as there are different membership 

values in the fuzzy set (including zero and one). Different 

paths (including those which are reduced or are not 

represented explicitly) show different members of the 

fuzzy set. The terminal each path ends at, shows its 

membership value. In Figure 3, membership value 0.3 is 

represented by -3 so the MTBDD shows the fuzzy set 

{0.3/0000, 0.3/0001, 0.3/0010, 0.3/0011, 1/0100, 1/0110, 

1/1000, 1/1010}. Strings 0000, 0001, 0010, ... correspond 

to numbers 0, 1, 2, ... respectively. 

 

Fig. 3. A MTBDD which represents the binary fuzzy relation {1/(1, 1), 

0.3/(0, 0)} 

4.1 Intersection and Union Operations 

Maximum and minimum operators were used as fuzzy 

set intersection and fuzzy set union respectively [14]. The 

general apply routine which was mentioned in Section 2 

takes two BDDs as its operands and another parameter as 

its operator, then, it applies the operator to the operands. 

A slightly modified apply routine (mtbdd_apply) which 

handles MTBDDs and maximum/minimum operators was 

added to the BuDDy library. Our implementation can be 

easily extended to include other t-norm operators. 



 

Alavi Toussi & Sadeghi Bigham, Design, Implementation and Evaluation of Multi-terminal Binary Decision Diagram … 

 

120 

5. MTBDDs as Binary Fuzzy Relations 

Any binary fuzzy relation has two domains, two 

disjoint sets of BDD variables are used. Every set of BDD 

variables is mapped to one of the domains. For example, 

if a domain has eight objects, three variables would be 

needed to show all its members (i.e.     ). 

In Figure 4, there are two domains and each one has 

two objects so all objects can be encoded by using one 

variable for each domain. Variable x0 is used to encode 

the objects in the first domain and variable y0 is used to 

encode objects in the second domain. Suppose that non-

terminal −3 is mapped to 0.3. In this way (0, 1) and (1, 0) 

are associated with 0 membership value. (1, 1) is 

associated with 1 membership value and (0, 0) is 

associated with 0.3 membership value. You can also see it 

as the 2-dimensional array: 
 

0.3 0 

0 1 
 

Since we implemented an algorithm similar to 4-way 

block-multiplication to compute the max-min 

composition of two binary fuzzy relations which are 

represented as MTBDDs, it is desirable to partition each 

relation into four blocks and access each one in constant 

time. In order to make this possible, interleaved variable 

ordering was used [7]. This means that if variables xi 

constitute domain x and variables yi constitute domain y, 

the ordering of variables would be x0 , y0 , x1 , y1 , x2 , 

y2 , .... See Figure 5 for an example. Binary fuzzy 

relations can be seen as square matrices of size n × n. In a 

binary fuzzy relation A that     , an identity matrix 

with smallest possible size is attached to A to meet this 

requirement. This technique is also used in [7]. This is 

working for max-min composition since minimum of zero 

and any other membership value is zero (similar to matrix 

multiplication and multiplication of zero by other element).  

 

Fig. 4. A MTBDD representing a fuzzy set 

 

Fig. 5. A binary fuzzy relation represented as a MTBDD. Nodes A, B, C 

and D show four partitions of this MTBDD. Both B and C correspond to 

the same node. 

5.1 Max-min Composition 

In general max-min composition of two binary fuzzy 

relations R1 (D × D) and R2 (D × D) is defined as follows: 
 

  (   )           (  (   )   (   )) 
 

The max-min composition procedure is similar to block 

matrix multiplication. A binary fuzzy relation can be viewed 

as a 2-dimensional matrix. This matrix is partitioned into 

four sub-matrices (blocks) in the procedure (Figure 5). 

max-min composition was implemented as a recursive 

procedure which is shown in Figure 6. During the recursion, 

at each call, parameters of the call (MTBDD a and 

MTBDD b) should be interpreted based on the depth of the 

recursion which is passed as the third parameter (call_level). 

This is because, the partitioning does not create four new 

MTBDDs but returns four sub-graphs of the original 

MTBDD as its partitions so a hypothetical level (root_level) 

is assumed. The mentioned hypothetical level indicates the 

smallest possible level of the resulted partitions (Figure 6). 

For example, consider the MTBDD shown in Figure 5, four 

partitions would be created after partitioning namely A, B, 

C and D. The hypothetical root level for these partitions is 

two which corresponds to the variable x1. This technique 

(introducing and using a hypothetical root level) avoids 

creation of new matrices (MTBDDs) and makes the max-

min composition procedure more efficient. In order to 

compute the max-min composition of MTBDDs a and b, we 

have to call mmc(a, b, 0). 

6. Evaluation 

To evaluate our representation, we extended the 

BuDDy library to represent and manipulate binary fuzzy 

relations by using MTBDDs. Also, we implemented 

binary fuzzy relations based on two dimensional arrays. 

The array implementation was used as a baseline (base 

implementation). Images in our input set are obtained 

from UIUC image database [15] and The Berkeley 

Segmentation Dataset and Benchmark [16]. 
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In our experiment, the fuzzy-connectedness problem 

is solved for different images in the input set. Results of 

these experiments and further details come next. 

6.1 Evaluation Results and Further Details 

Results are given in tables 2, 3 and 4. Input relations 

for our experiments, are affinity relations, which are 

created from various images. Affinity relation is a 

symmetric and reflexive fuzzy relation which assigns a 

membership value to a pair of pixels based on their local 

properties [17]. We initialized this relation only for pairs 

of pixels which are neighbour in a given image and 

membership value for any other pair of pixels in the 

image is set to zero. This leads to sparsity of affinity 

relations. The following similarity measure which was 

used in [18] has been employed to initialize affinity 

relations. δ is the largest diff (diff is computed for every 

pair of pixels) and                   show color 

intensities associated with c and d pixels respectively: 
 

     (   )    √    
  ⁄           

 (     )
  (     )

 
 (     )

  
 

Images used for creating affinity relations are shown 

in Table 1. The first one is from UIUC image database 

[15] and the next three images are obtained from The 

Berkeley Segmentation Dataset and Benchmark [16]. The 

last image is a synthetic image from reference [18]. All 

experiments are run on a machine with 2.8 GHz Intel 

CPU and 4 GB of RAM running Fedora 14. 

In the rest of this Section, problem of fuzzy-

connectedness is investigated. Input to this algorithm is an 

affinity relation which is extracted from an image, and 

final output is a relation that assigns a membership value 

to every pair of pixels in the image. The output can be 

used to create different clusters of pixels [17]. The final 

goal of fuzzy connectedness is to calculate FC relation 

which is a reflexive, symmetric and transitive relation. It is 

basically max-min transitive closure of the initial affinity 

relation. The FC relation is a full binary fuzzy relation. It 

assigns a membership value to every pair (c, d). This value 

is the maximum strength of all possible paths from c to d. 

The strength of a path is the smallest membership value 

along the path. FC relations are obtained by computing 

max-min transitive closure of affinity relations. 

We implemented two different versions to compute 

the transitive closure. Our base implementation used two 

dimensional arrays to represent binary fuzzy relations and, 

it employed Floyd-warshall algorithm as shown in Figure 

7. n is the number of pixels in the image. c stores the 

affinity relation initially and represents fuzzy 

connectedness (FC) relation at the end. Our second 

implementation used MTBDDs to represent binary fuzzy 

relations and, it computed FC relation by using Repeated 

Squaring algorithm as shown in Figure 8. Affinity relation 

is the input to this algorithm and at the end, res would be 

a MTBDD that represent the fuzzy connectedness relation 

(FC). Because of the MTBDD special structure we could 

not use the Floyd-warshall algorithm in conjunction with 

this data-structure efficiently. 

Table 2 shows running-times of our base and MTBDD 

based programs which compute max-min transitive 

closure of affinity relations obtained from our test images. 

Three versions are shown in the table. Column base shows 

the base implementation and the other two columns under 

mtbdd show the MTBDD based implementation with one 

and two digits of precision. The MTBDD based 

implementation is significantly faster than the base 

implementation when precision of one digit is used (it is 

18 – 27× faster). Compared to base implementation, using 

2-digits precision improved running time in all cases, but 

one, which was our smallest image (40 × 27). In this 

particular case all running times were under one minute. In 

other cases MTBDD based implementation with two digits 

precision is faster by a factor ranging from 2 to 7. 

When images are larger and their pixels are more 

homogeneous, MTBDD based implementation becomes 

faster relative to the base implementation. Note that 

running-time in base implementation only depends on size 

of input image (i.e. number of pixels). In contrast, MTBDD 

based implementation’s running-time depend both on size 

of image and values stored in every pixel of the image. For 

example, running-times for image3 and image4 are the 

same when base implementation is used but it takes less 

time for MTBDD based implementation to compute the 

transitive closure when it takes image4 as input. This is 

because image4 leads to MTBDDs which are more compact 

(this is described in more detail in the next paragraph). 

As described in Section 5, different paths in MTBDD 

representation of a relation show different pairs in the 

relation. More commonalities among paths lead to more 

reductions and, a more compact MTBDD representation 

of the relation. Computations on a smaller MTBDD take 

less time. Two different images even with the same size 

result in different MTBDDs with different sizes. An 

image which results in a MTBDD with more 

commonalities in its paths occupies less memory and 

results in fewer computations in the MTBDD based 

solver (Sparsity in input relation and also images with 

homogeneous pixels leads to more compact MTBDDs). 

In Table 3, number of entries in FC relations, number 

of terminals and number of nodes in MTBDD 

representation of these relations are shown. Algorithms 

which were used to compute FC relations are show in 

Figure 7 (base version) and Figure 8 (MTBDD version).  

Number of nodes in MTBDD base implementation is 

extremely lower than number of entries in base 

implementation which leads to a far improved memory 

consumption when MTBDDs are used to represent binary 

fuzzy relations. Every array entry in base implementation 

is three bytes (two bytes for a short integer and one byte 

for a flag) and the size of every bddnode is 20 bytes [9]. 

In Table 4 size of array and MTBDD based representation 

of FC relations are shown (in KB). The column size (r) 

indicates number of entries in the array representation of 

the relation (base implementation), column size (array) 

shows the amount of memory allocated for representing 
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arrays in the base implementation and, the other two 

columns indicate the amount of memory allocated for 

representing MTBDDs in the MTBDD based 

implementation (precision of one and two digits). 

Considering this table, MTBDD based representation 

takes 37.9 – 265.5× less memory than the array 

representation depending on the input image. 

It is also noteworthy that shape and number of nodes 

in BDDs (and MTBDDs as well) also depend on variable 

ordering beside data they are representing since different 

variable ordering leads to different paths with different 

degree of sharing. However, a fixed variable ordering is 

used in our implementation. 

Number of terminals is also shown in Table 3. This 

gives the number of distinct (hard) clusterings that can be 

obtained from the resulted relation. When number of 

terminals is limited to 11 (1-digit precision), it is five or 

six and in the other case, when number of terminals is 

limited to 101 (2-digit precision), it is usually around 25. 

 
 

 

 

Fig. 6. Max-min composition (mmc) routine in pseudo code. a and b are MTBDDs and callLevel indicates the depth of the recursion. 

 

Fig. 7. Using Floyd-warshall algorithm to compute max-min transitive closure of affinity relation. 

 

Fig. 8. Using MTBDDs and Repeated Squaring algorithm to compute max-min transitive closure of affinity relation. 
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Table 1. Images which are used for creating affinity relations. 

Image Image name Size 

 

Image0 80x65 

 
Image1 40x27 

 

Image2 60x40 

 

Image3 90x60 

 

Image4 90x60 

Table 2. Running times of Fuzzy Connectedness problem solver for both 

base and MTBDD based implementations (in seconds). 

Image Base mtbdd 1 mtbdd 2 

Image0 3574 134.61 2236 

Image1 32.01 1.78 41.90 

Image2 350.72 13.88 285.48 

Image3 4000 214.64 1898.21 

Image4 same as image3 148.95 533.52 

Table 3. Number of entries in FC relations and number of nodes which 

are allocated to represent the relation in its MTBDD representation 

Image Size(r) 
mtbdd 

terminals 1 

mtbdd 

terminals 2 

Nodes in 

mtbdd 1 

Nodes in 

mtbdd 2 

Image0 27040000 6 28 25683 216461 

Image1 1166400 6 25 2212 30753 

Image2 5760000 5 27 4007 87306 

Image3 29160000 5 26 16469 581770 

Image4 
same as 

image3 
5 10 34995 57439 

Table 4. Size of array and MTBDD representation in KB 

Image size(r) size(array) size(mtbdd 1) size(mtbdd 2) 

Image0 27040000 81120 513 4329 

Image1 1166400 3499 44 615 

Image2 5760000 17280 80 1746 

Image3 29160000 87480 329 11635 

Image4 29160000 87480 699 1148 

7. Conclusion 

In this work, we designed and implemented a MTBDD 

based data-structure to represent fuzzy sets and relations. 

Also, the BuDDy library was extended to support 

MTBDDs, and it was employed to implement our idea. 

Promising results were obtained in evaluation of our 

method. In particular, considering the fuzzy connectedness 

problem and compared to the base implementation, when 

MTBDD based implementation was used, the running-

time was improved by a factor ranging from 2 to 27, and, 

when the memory needed to represent final results was 

improved by a factor ranging from 37.9 to 265.5. 

In the future we would like to apply our data-structure 

to other problems in fuzzy systems which involve 

manipulating binary fuzzy relations and fuzzy sets, 

specially, problems with very large sets of fuzzy data 

such as the use of fuzzy sets in data mining, approximate 

reasoning and information retrieval based on fuzzy logic 

[19, 20, 21, 22]. 

Extending our current implementation to a framework 

for research in fuzzy systems is another direction we 

would like to follow. In particular, researchers would be 

able to add t-norms operators of their interest, and, design 

and run new experiments on top of our framework. 
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