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Abstract 
The increase in the complexity of computer systems has led to a vision of systems that can react and adapt to changes. 

Organic computing is a bio-inspired computing paradigm that applies ideas from nature as solutions to such concerns. 

This bio-inspiration leads to the emergence of life-like properties, called self-* in general which suits them well for 

pervasive computing. Achievement of these properties in organic computing systems is closely related to a proposed 

general feedback architecture, called the observer/controller architecture, which supports the mentioned properties 

through interacting with the system components and keeping their behavior under control. As one of these properties, self-

configuration is desirable in the application of organic computing systems as it enables by enabling the adaptation to 

environmental changes. However, the adaptation in the level of architecture itself has not yet been studied in the literature 

of organic computing systems. This limits the achievable level of adaptation. In this paper, a self-configuring 

observer/controller architecture is presented that takes the self-configuration to the architecture level. It enables the system 

to choose the proper architecture from a variety of possible observer/controller variants available for a specific 

environment. The validity of the proposed architecture is formally demonstrated. We also show the applicability of this 

architecture through a known case study. 

 

Keywords: Organic Computing; Observer/ Controller Architecture; Self-* Properties; Self-Configuration; Formal 

Verification. 
 

 

1. Introduction 

The arising complexity in computer systems has led to 

the introduction of new paradigms such as Autonomic 

Computing [1], Organic Computing (OC) and Pervasive 

Computing [2] that cope with complexity. Organic 

Computing is centered around cooperating entities which 

are sometimes called agents [2]; each of which has a set 

of capabilities. These capabilities are mostly sensors and 

actuators that enable the agents to interact with their 

environment and perform what is expected from them. 

Agents are also capable of communicating with each 

other and ultimately contribute to the creation of a single 

collective OC system. Because of the complexity in OC 

systems, an explicit design cannot be given for each 

possible situation. Therefore, a degree of freedom in 

decision making is given to the agents, so that the system 

can be managed collectively based on the local decisions 

[3]. This leads to the emergence of properties, like self-

healing, self-configuration, and self-optimization at the 

system level that are called self-* in general [2]. 

The main drawback of obtaining self-* properties in 

this manner is the possible emergence of unwanted 

behaviors due to the lack of system-wide vision in the 

local decisions. Coping with this problem implies using a 

control mechanism. To achieve this goal, the 

Observer/Controller architecture or o/c (for short) has 

been proposed for OC systems [3]. The observer as the 

name suggests has to observe the system passively and 

reports to the controller for proper actions. The part of the 

system that is under observation is usually called System 

under Observation and Control (SuOC) [2]. The generic 

o/c architecture [3] is the most known and cited o/c 

architecture, and many of the existing researches in OC 

refine the generic o/c architecture for their own purposes; 

for example, see [4]-[6]. The generic o/c architecture is 

studied deeper in Section 2.  

Self-configuration, which is related to the ability of 

the system to reconfigure itself dynamically [7], is among 

self-* properties that the o/c architecture tries to control. 

It is defined as ―the set of all system and environmental 

attributes that can be modified by control actions‖ [8]; 

these attributes are divided into two categories: internal 

and external [8]. The former attributes that controlled by 

the system while the latter are controlled by the user or an 

external entity.  
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In OC, self-configuration is mainly achieved in the 

SuOC level, meaning that the SuOC is reconfigured 

accordingly by the o/c component. In this way, the benefit 

of the self-configuration property is not present in the 

component level, or in other words, OC systems are 

committed to have a fixed o/c component governing the 

SuOC. Therefore, any rearrangement or change in the o/c 

component is prevented, which will be a major drawback 

to environments where multiple o/c components 

configurations are applicable. This issue motivated us to 

enable the self-configuration property at the o/c 

component level and achieve a first step toward a self-* 

enabled o/c component for the o/c architecture.  

Hence, the main contribution of this paper is focused 

on promoting the self-configuration property to the o/c 

component level. In order to achieve this goal, we 

propose a bio-inspired self-configuring o/c architecture 

that configures itself according to the operational 

parameters. The bio-inspiration in our work comes from 

the notion of cell differentiation process [9]. We also use 

the feature model concept from the software architecture, 

or more precisely, the software product line so as to 

capture o/c component configurations. In addition, we 

present and evaluate our ideas using formal methods.  

For this purpose Section 2 is dedicated to the 

background concepts, especially the biological ones while 

Section 3, the related work is reviewed, and then the 

proposed o/c architecture is presented in Section 4. In order 

to validate the proposed architecture, it is specified and 

verified using formal methods in Section 5. Section 6 shows 

the applicability of the proposed o/c architecture through a 

known case study, and finally, the last section is devoted to 

the conclusion and some directions for future work. 

2. Background 

2.1 The Generic o/c Architecture 

The generic o/c architecture [3] consists of a set of 

components shown in Fig. 1. The observer component in 

this architecture is composed of several sub-components 

that monitor and use data from the SuOC for analysis and 

prediction; the results are aggregated and then used by the 

controller.  

The controller component is in charge of executing the 

decisions made by its learning components for the SuOC. 

Three sources of data are given to the ―aggregator‖, and 

then the aggregated data is used by the ―mapping‖ (rule 

base) and ―rule performance evaluation‖ subcomponents 

of the controller. This component has both online and 

offline learning subcomponents. The ―rule performance 

evaluation‖ subcomponent is for online learning, which 

updates the existing rules as needed, whereas the ―rule 

adaptation‖ and ―simulation model‖ subcomponents are 

due to offline learning, they create new rules and delete 

the old ones. The ―objective function‖ represents the user 

interactions that affect the control of the system. Finally, 

an ―observation model‖, which is applied by all the 

observers in the OC system, is selected by the controller 

to indicate the observable attributes and the proper 

analysis method and parameters for observation (e.g., the 

sampling rate).  

The generic o/c architecture has three variants [3]: The 

centralized variant that consists of a single o/c component 

and a single SuOC, while decentralized variant has many 

SuOCs, each with a dedicated o/c component. The third 

variant is the multi-level o/c architecture, in which one of 

the o/c components is in the highest level, while the 

underlying SuOC consists of a collection of smaller 

SuOCs. These smaller SuOCs in turn can have their own 

SuOCs, resulting in a fractal like structure. 
 

 

Fig. 1. The generic o/c architecture [3] 

2.2 Cell Differentiation 

For introducing the notion of cell differentiation, it is 

helpful to have a few words about the functionality of 

cells and the difference between them.  

Multicellular organisms (or metazoons) need different 

types of cells (e.g., blood cells and neurons) so as to 

survive. Each cell type has a variety of functions to 

perform, some are common to all, while others are special 

to that type of cell. From a Biochemical point of view, 

proteins contribute to any biological function, and therefore, 

the difference between the cells comes from the difference 

in the proteins they have. For example, red blood cells have 

the special function of transferring oxygen in the blood 

because of hemoglobin, a protein that they have.  

Regarding the mentioned concepts, interesting 

questions arise: 1) where proteins come from and 2) what 

makes each cell produce a special subset of proteins? The 

precise answer to this question is a major research topic in 

modern biology. But, we intend to present a brief answer 

from the biology literature that is both related and useful 

for the bio-inspiration mechanism used in this paper. All 

proteins inside a cell are encoded in a large biochemical 

molecule named DNA, which has many sections called 

genes that are used in a process called ―transcription‖ [9]. 

In this process, the cell produces proteins from the DNA 

(the answer to the first question).  

When a gene is used in creating proteins, it is said to 

be expressed. The term ``repressed'' is employed when a 

gene is not used for some reason such as some chemicals 

[9]. In other words, the expression/repression of genes 

controls the function of cells via proteins. This means, 

that the difference in the proteins produced by the cells 
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comes from the expression/repression of their genes (the 

answer to the second question).  

With this introduction, cell differentiation can be 

defined as follows. All of the multicellular organisms 

begin in an embryonic state (before the birth) from a 

single cell called zygote, and all the cells evolve from it. 

With each generation, some genes are 

expressed/repressed, and ultimately, specialized cells are 

evolved. This process which is most active before the 

birth is known as cell differentiation, which has critical 

role in the life of multicellular organisms. There are some 

decisive factors that affect cell  differentiation [9], 

especially the gene expression/repression, that results in 

different functionalities in the cell. Cell differentiation 

also depends on some chemicals, like growth factors and 

inducers, which can cause or prevent cell differentiation 

[9]. Another factor that affects cell differentiation is the 

micro-environment (also called niche) which surrounds 

the cells. For instance, keratinocytes (skin cells) are 

affected by the micro-environment, and in this way, 

specialize and form the skin [9].  

This is only a brief introduction to cell differentiation, 

the interested reader is referred to [9] for more information. 

2.3 Feature Model 

The feature model comes from Feature-Oriented 

Domain Analysis [10] ―describe a hierarchy of properties 

of  domain concepts‖ [11]. This model helps to determine 

which combinations of features can be selected for 

domain concepts. If we consider the domain of wrist 

watches as an example, some of the general statements 

that can be given are: The watch can be either digital or 

mechanical, displaying the time by digits or hands. , and 

in some showing the date.  
 

 

Fig. 2. A simplified feature diagram of the wrist watch example [10]. 

Feature diagram is the graphical representation of a 

feature model. Fig. 2 is a simplified feature diagram of 

the wrist watch example. The full dots indicate the 

―mandatory‖ features (like Time Display) that must be 

present in any domain concept regarding this feature 

model, while the empty dots indicate an ―optional‖ 

property (like Date Display). The arc between Digital and 

Mechanical denotes ―alternative‖ relationship (i.e., only 

one of these two features must be selected). There is 

another ―or-relation‖ (for example, between Hands and 

Digit) that indicates any number of features that can exist 

together (e.g., a digital watch can have either digital 

hands or digits). Other two common relationships are 

―require‖ and ―exclude‖ relationships [12]. The ―require‖ 

relationship between Digit and Digital represented by a 

dashed arrow indicates that Digit display cannot be 

selected without a digital wrist watch. For example, digit 

display is only available to digital wrist watches. The 

―exclude‖ relationship is used to indicate that two features 

cannot exist together. It is usually displayed by double 

headed dashed arrows in feature diagrams. Having these 

relationships, feature models have many uses. In software 

product lines they are used for defining products and 

configurations [11]. In Section 4, we use the feature 

models for the configuration definition. 

3. Related Work 

Brinkschulte et al. [13] proposed an OC operational 

mechanism called Artificial Hormone System for task 

distribution among heterogeneous processing elements 

based on three types of hormones, namely, eager value, 

suppressor, and accelerator. The eager value determined the 

appropriateness of a task to be executed on a processing 

element. The suppressor and accelerator had two opposite 

effects on the process elements. The former increased the 

chance for taking tasks, while the latter tried to repress the 

execution of tasks. The Artificial Hormone System achieve 

d many self-* properties by employing various sub-

types of these three hormones [2] that participate in a 

hormone based control loop [2], in which each process 

element declares the appropriateness of a given task 

execution. Hormones from other process elements 

affected appropriateness value declared by the process 

elements. The overall effects of hormones on the control 

loop decided which process element would execute the 

task. The OC system achieved self-configuration by 

finding a suitable initial configuration for tasks based on 

the function of these hormones.  

Roth et al. [14] suggest an OC middleware consisting 

of an organic manager and a set of ordinary services (like 

a database service) that communicated via the middleware 

running on distributed nodes for ubiquitous and pervasive 

computing. The goal of the middleware was to enable 

self-* properties (including self-configuration) for 

ordinary services. In this regard, the organic manager 

monitored the middleware and incorporated some self-* 

services, each of which was responsible for one self-* 

property. Using these self-* services required specific 

information provided by each ordinary service. However, 

since self-* services are independent, they might make 

conflicting decisions. Using the approach of Satzger et al. 

[5], a high-level planner component was added to the 

middleware in order to resolve the possible conflicts.  

The o/c component of the middleware was inspired 

from the MAPE cycle of IBM autonomic computing [1] 

consisting of ―Monitor‖, ―Analysis‖, ―Plan‖ and ―Execute‖ 

stages. In the monitor stage, an information pool manager 

component managed the information pools containing the 
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information needed for the control mechanism. The 

analyze stage had an event manager and a fact base 

components; when an event occurred, in order to use the 

event for planning, the event was transformed into facts. 

The plan stage, consisted of both a low level planner and 

a high level planner components. A plan was devised and 

then executed so as to solve any detected problem using 

these two planners. The low level planner component had 

a reflex manager component that managed the low level 

reflexes subcomponent. The reflexes subcomponent acted 

like a cache for previous system rules. Having this cache, 

if a previous decision was applicable to the current state, 

it would be applied. The high-level planner finds 

solutions to situations that are not solved by the low level 

planner. The high-level planner is managed by the high-

level manager that converts the facts into a high-level 

language to solve by the planner. Finally, the actuator 

executes the plan given by the plan stage. Using this 

structure, the self-configuration service in this 

middleware determines the required resources for 

ordinary services and ―triggers an auction‖ [14] so as to 

find the best node for that service. 

Nafz et al. [6] proposed the Restore Invariant 

Approach (RIA) controller in which a set of 

reconfiguration algorithms processed a set of resources 

and agents having the required capabilities. The OC 

system tried to keep a set of invariants, regarding these 

invariants, result checker component examined the results 

of the used reconfiguration algorithms before the actual 

reconfiguration. Reconfiguration algorithms component 

was responsible for achieving self-configuration and was 

used in determining which capability must be active on 

which agent (as the initial configuration). These 

algorithms were also used for reconfiguring the agents 

whenever the invariant was violated.  

The ORCA project was aimed at ―transferring self-* 

properties to robotic systems‖ [15]. In this project a multi-

level o/c architecture with decentralized modules was 

proposed. One type of these modules included Organic 

Control Units that monitored and controlled other 

modules and configured them for operation. The lower-

level organic control units were themselves monitored by 

higher-level organic control units leading to a multi-level 

self-configuration mechanism.  

In summary, it can be said that all of the mentioned 

works only covered self-configuration in the SuOC level 

and do not extend it to the o/c component; hence, it lost 

the advantages of self-configuration in this level by having 

a fixed o/c component. The fixed architecture prevents any 

rearrangement or change in the o/c components, which 

will be a major drawback to environments where multiple 

o/c component configurations are applicable. 

4. Proposed Architecture 

Our approach to enabling bio-inspired self-

configuring o/c (sco/c) is architectural. We try in this 

section, which is divided into several subsections, to 

explain the rationale behind our architectural decisions. 

First, we explain the influence of the bio-inspiration from 

the cell differentiation on our architectural decisions as 

principles extracted from cell differentiation. Then, an 

illustrative example is introduced that will be used 

throughout the paper for demonstrating our proposed 

architecture. The third subsection presents an architectural 

meta-model that incorporates our core ideas.  

4.1 Bio-inspiration for Self-Configuration 

The cell differentiation process can be considered as 

an advanced form of self-configuration in which each cell 

self-configures its functionality accordingly. To be able to 

apply the benefits of cell-differentiation, we need to have 

building blocks analogous to the cells. This leads us to the 

agents and the first core principle in sco/c architecture. 

Principle 1. In sco/c architecture, the system is 

considered as a collection of communicating agents. 

Though this principle is not novel, it is required as a 

base for the application of the other bio-inspired 

principles. Based upon Principle 1, we can adopt the 

concept of genes. The difference between the cells is 

related to the expressed/repressed genes. This must be 

shown in the sco/c architecture, too. Subsequently, we 

must be able to express the system in terms of genes, 

which their active/inactive state affects the behavior of 

the agents and ultimately the system. 

Just like the multicellular organisms, where 

everything is expressed through the genes, we need an 

alternative concept so as to capture the sco/c architecture. 

We propose the use of the ―capability‖ concept that has 

also been used in organic computing [2] as well as multi-

agent systems. 

Principle 2. For all the agents, every function must be 

definable in terms of capabilities. Every functionality is 

available if and only if the corresponding capability is 

activated. Likewise, the deactivation of any capability 

will result in the lack of corresponding functionality.  

This is analogous to gene expression/repression in cells. 

This principle shows what the agents do.  In relation to this 

principle the question of that what should be done about 

the ―capabilities‖ of the o/c component may arise, which 

can be answered in various ways. Regarding the bio-

inspiration, it can be noticed that all the functionalities of a 

living organism, even the control mechanisms, are coded 

into the genes. Since we have chosen capabilities as 

counterpart of the genes, the control mechanism of the 

system must be represented in terms of capabilities.  

This is a key principle in sco/c architecture that results 

in a uniform view of the system that makes the agents more 

like cells in multicellular organisms. This means everything, 

including the control mechanism is represented using one 

concept. This principle blurs the distinction between SuOC 

and the o/c component compared to other o/c architectures. 

So as to simplify the architecture description, we 

distinguish the capabilities representing the o/c component 

from the rest of the capabilities.  
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We promote the concept of agent capabilities by 

introducing another set of capabilities called Organic 

Computing capabilities. 

Principle 3. The Organic Computing capabilities or 

OC capabilities are related to the o/c component. They 

participate in the observation and control of the OC 

system. The set of OC capabilities includes the sub-

components of the o/c component and follow Principle 2 

in terms of activation and deactivation. 

In order to distinguish between the OC capabilities 

and the capabilities that have nothing to do with the 

control mechanism, we will refer to the latter as normal 

capabilities. In other words, agents use normal 

capabilities in performing their normal tasks. This 

includes the agent sensors and actuators for interacting 

with their environment.  

For example, when the RIA controller is identified as 

the suitable o/c component, the invariant monitor, 

reconfiguration algorithms and result checker are the 

needed OC capabilities. In addition, the ―reconfiguration 

algorithms‖ capability needs the ―invariant monitor‖ 

capability, while in turn it is needed for the ―result 

checker‖ capability. 

Principle 4. In order to form the control mechanism, 

the required relationships between the OC capabilities 

must be established.  

For example, an OC capability like ―data analyzer‖ 

from the generic o/c architecture (Section 2), so as to 

operate, needs to be somehow connected to a monitoring 

OC capability. In this way, a set of relationships between 

the OC capabilities is formed. It can be said that o/c 

architecture can be realized via cooperation of agents 

using OC capabilities with regard to their relationships. 

So far, the presented principles can create the foundation 

needed for sco/c architecture. The self-configuration 

property of the sco/c architecture is also influenced by 

bio-inspiration as follows. In the beginning stages of cell 

differentiation, only zygote exists with no differentiation. 

After that, some genes are expressed in the following 

generations, and thus, specialized cells appear. 

Principle 5. In the beginning, no OC capability is ―active‖  

The control mechanism is the first thing to be realized. 

Since the control mechanism is realized by OC 

capabilities, OC capabilities must be activated in such a 

way that the relationships between them are preserved. 

This principle ensures that the system only operates 

when there is a control mechanism formed using OC 

capabilities (Principle 4). This principle prevents the 

system from operating without a control mechanism. 

Principle 6. Micro-environment and the chemicals 

present in it are required for the cell differentiation process. 

The micro-environment is achieved using the concept of 

neighborhood that is common in multi-agent systems 

meaning that when an OC capability is active in a 

neighborhood, it can prevent the other agents from 

activating it. Also, when a needed OC capability is absent 

from a neighborhood, it must be activated. For the 

chemicals (for example, inducers and growth factors), 

messaging will be used. Similarly, when an OC capability 

residing in a different agent is needed by another OC 

capability (having ―require‖ relationship) messaging is used.  

Principle 7. Each cell differentiates using its genes. 

Gene expression/repression play a key role in deciding 

what gene should be expressed/repressed. 

This principle implies that local control of gene 

expression/repression is needed. Each agent must know 

the relationship between the OC capabilities and when it 

should activate them, and it must be able to 

activate/deactivate them when needed. 

Based on these principles, the sco/c architecture can be 

presented, but first, an illustrative example is presented in the 

next subsection in order to help understand the application of 

the bio-inspired principles in the sco/c architecture. 

4.2 Illustrative Example 

The example is a self-organizing resource-flow system 

[5], [6] and [16] in which a number of resources are 

processed by independent agents. The process of each 

resource consists of a set of tasks performed on each 

resource by the agents. Each agent has a collection of 

tools, each of which can perform a specific task. These 

tools might fail, rendering the agent unable to perform 

one or more of its tasks. The goal is to reconfigure the 

agents in a way that the processing of resources can still 

continue. The reconfiguration mechanism changes the 

assignment of tools to the agents, or in other words, 

changes the tasks they perform. It must be noted that at 

some point no reconfiguration can be done so as to keep 

the process going on. For instance, when all the instances 

of a tool is broken, no agent can perform the task related 

to that tool anymore. This will leave no possible 

reconfiguration. The number of tasks for the resources is 

not restricted to any specific number, but in [5] , [6] and 

[16] three tasks for each resource were considered for 

identical agents, which were drilling a hole in the 

resource (it a work piece), inserting a screw in it and 

tightening the screw.  

In order to keep the illustrative example simple and 

tangible as possible, we will use this particular instance of 

self-organizing resource-flow system (as defined in Satzger 

et al. [5] and Nafz et al. [16]) as the illustrative example. 

4.3 Architecture Meta-Model 

Fig. 3 shows the sco/c architecture meta-mode that 

supports and incorporates the bio-inspired principles 

mentioned before. The reason for proposing this meta-model 

is to point out the sco/c architecture works for systems that 

follow this meta-model and have its main elements.  

A closer look at the meta-model shows the influence of 

principles 1, 2 and 3 clearly, since the meta-model is based 

on interacting agents with normal capabilities and general 

OC capabilities. Communication between agents realizes 

Principle 6 (i.e., micro-environment and chemicals in it). 
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There are two additional OC capabilities in the meta-model, 

named regulation and expression. The introduction of these 

two mandatory OC capabilities helps to realize the needed 

local control (Principle 7) and contribute to the self-

configuration in the whole system. These two OC 

capabilities are defined more precisely as follows:  

- The regulation capability must identify the proper 

o/c component configuration by activating the 

needed OC capabilities and deactivating the 

unnecessary ones. This function is similar to what 

happens inside each cell. 

- The expression capability resolves the dependencies 

between OC capabilities that are identified by 

regulation. The expression capabilities of various 

agents collaborate with each other when needed. 

Returning to our illustrative example, the robots are 

independent identical entities that can be safely considered 

as agents. Their capabilities are drilling, insertion and 

tightening. In this way, principles 1 and 2 are satisfied. The 

OC capabilities and activation/ deactivation of these 

capabilities in the example will be introduced later. 

4.4 Self-Configuration for the SCO/C Architecture 

The demonstration of self-configuration in the sco/c 

architecture requires the description of the usual behavior 

of the system. The scenario for sco/c can be described in 

short as follows. The system begins in an embryonic state 

in which no OC capability is active (Principle 5). 
 

 

Fig. 3. The sco/c architectural meta-model 

Firstly, both the regulation and expression are 

activated, so the local control is realized. The regulation 

capability identifies the OC capabilities needed to be 

activated. The expression capability resolves the 

dependencies. After that, the OC capability/capabilities 

that must be activated in each agent is indicated by a 

distributed algorithm. Finally, the desired OC capabilities 

are activated by the regulation capability. 

Until the end of this section, the above mentioned 

scenario is presented with more details. The identification 

of the needed OC capabilities in the current sco/c 

architecture is in form of rules supplied by the architect in 

the design time (wrong rules will lead to undesired 

outcomes). Therefore, the validity of the mechanism is 

totally dependent on the mindset of the architect since the 

control mechanism in the sco/c architecture cannot 

understand the semantics of such rules. These rules have 

the generic form of ―if-then‖ meaning that if a condition 

is matched, some capabilities are considered to be needed 

(i.e., an o/c architecture configuration).  

The feature model (Section 2-3) is a good candidate 

for capturing the OC capabilities and their relationships in 

the form of a hierarchy. The possible configuration for the 

o/c component can be given through the feature diagram. 

Fig. 4 shows a feature diagram for the illustrative 

example incorporating [5] and [16] as the two related 

works presented in Section 4-2 (the organic middleware 

[5] and the RIA controller [16]). The OCu represents the 

organic middleware controller. It must be mentioned that 

other o/c component configurations can be incorporated 

in the feature diagram, but we used the ones that suit our 

illustrative example the best. As can be seen, the o/c 

component mandates both observer and controller. The 

observer can have one of the two o/c components 

(invariant monitor and information pool manager). The 

―require‖ relationship indicates inter-tree relations 

between the OC capabilities. For example, the RIA 

controller can be realized using the ―require‖ relationship 

between invariant monitoring and RIA controller. The 

final subcomponents of the RIA controller must be 

realized because of the mandatory relationship between 

the result checker and the reconfiguration algorithm. 

After the identification of the OC capabilities by the 

regulation capability in each agent, all of the agents know 

that the o/c component configuration must be activated.  

Next, each agent compares its OC capabilities with the 

needed OC capabilities for realizing the selected o/c 

component configuration. There might be multiple 

instances of each needed OC capabilities identified by the 

agents. In other words, many agents may have the needed 

OC capabilities. They are announced to the neighborhood 

and ultimately all the system. After that, a distributed 

election algorithm, such as the one introduced in [17], 

elects the desired OC capabilities. The algorithm denotes 

which OC capability in which agents must be activated. 

Therefore, any other OC capability except those indicated 

by the algorithm must be deactivated. The reason for 

deactivation is that there might be a previous o/c 

component configuration. If this deactivation does not 

happen, there might be another configuration active, and 

this might lead to unexpected results. This causes the 

sco/c architecture to be usable in variety of environments, 

i.e., if the regulation can determine the type of the o/c 

component configuration, it make the system operate 

automatically and without manual intervention. If the 

activation/deactivation process is completed, all the 

desired OC capabilities are activated, and a special 

configuration of the o/c architecture can be realized. After 

a successful configuration, the OC system starts to 

operate. It can be said that, in the sco/c architecture, there 

are two distinct self-configuration and operation stages. 

Self-configuration is involved with the realization of the 

control mechanism, while in the operation stage, the 

SuOC is reconfigured accordingly. 

If we consider Fig. 4 as the feature diagram, the 

following argument can be presented for the RIA 
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controller and the organic middleware: The former uses a 

centralized variant of the o/c architecture, while the latter 

uses a decentralized one. The decisions are centralized in 

the former and easier to achieve, while in the latter, the 

decisions are made independently and then coordinated. 

So, a key architectural decision would be to choose and 

employ a proper new configuration from these two 

alternative o/c architectures. As one of the configurations, 

we can assume the computational power of the agents in 

the regulation rules supplied by the architect. The 

computational power is chosen because the organic 

middleware requires that its instances run on each agent 

and make decisions, therefore requires higher 

computational power, and consequently power usage. 

This power usage is a major concern when it comes to 

general applications of pervasive or ubiquitous computing. 

On the other hand, the RIA controller is centralized and 

has more lightweight components (or in other words, less 

computational power) than the organic middleware.  

When the decision is made and one of the variants is 

chosen, the required components should be identified. For 

instance, if we want to select the RIA controller itself, all 

the agents should choose the respective components: 

invariant monitor, reconfiguration algorithms and result 

checker. In our illustrative example, since the agents 

(robots) are identical, all of them announce the three 

needed OC capabilities. The distributed election algorithm 

will eventually specify the appropriate allocation of the OC 

capabilities. The expression of each robot activates the 

selected OC capabilities and deactivates the others. After 

that, the system can begin its normal operation. 

5. Formal Specification and Verification 

In order to present the sco/c architecture more 

precisely and with less ambiguity, and verify its self-

configuration property formally, the sco/c architecture is 

specified. We also used Linear Temporal Logic (LTL) [18] 

for expressing invariants needed for the sco/c architecture. 

Our approach for verification is using model checking 

capabilities of the Maude formal tool [18].  

5.1 Specification 

Our specification is focused on the self-configuration 

phase because it involves all of the contributions of this paper. 

Specifications 1 through 5 describe the regulation and 

expression capabilities and the governing conditions in Maude. 

Specification 1. This specification formalizes 

Principle 7 for the regulation capability. It is a collection 

of rules supplied by the architect. 
 

                             (1) 

                                     (2) 

                            (3) 

                             
             

(4) 

 

          represents any information (such as the 

number of agents or agent distribution) that can be used 

for decision making and selecting the OC capabilities. 

          (Declaration 1) is a function that takes a set of 

parameters (as a specific condition) into account and 

returns a Boolean value representing the validity of that 

condition. For example it checks if                  
and               as two parameters constituting a 

specific condition holds or not.            (Declaration 3) 

is defined as a set of                (Declaration 2) 

              defines the elements of the regulation 

capability in the form of a rule that specifies a proper set 

of capabilities for each condition. The          function 

(Declaration 4) specifies the regulation function of the 

regulation capability. It takes a condition and the set of 

              and returns the capabilities that are 

needed to be activated in that condition.  

Specification 2. Similarly,            (Declaration 5) 

denotes the expression capability. It shows the 

relationships        between the OC capabilities 

according to the feature diagram. This specification 

formalizes Principles 3, 4 and 7. 
 

                        (                  )  
        *                                        + 

(5) 

 

This specification formalizes the relationships 

discussed in Principle 4. Using         defined in this 

specification, the relationships between OC capabilities 

can be represented.  

Apart from these specifications, additional ones are 

needed in order to specify operations and normal 

capabilities of the agents. Since we have focused on OC 

capabilities, the specification can be simplified by ignoring 

other operations and normal capabilities of the agents. 

Specification 3. Based on the sco/c meta-model and 

principles 1, 2 and 3, the agent can now be defined 

(Declaration 6) regarding an instance of           , an 

instance of           , a set of active OC capabilities and 

a set of inactive OC capabilities. The active OC capabilities 

represent the active/expressed OC capabilities, while the 

inactive OC capabilities represent the deactivated/repressed 

OC capabilities. These two sets of OC capabilities have no 

intersection. In other words, no capability can be both 

active and inactive at the same time; see Equation 7. 
 

                                        
             

(6) 

  (         )                
             
              
               
                   

(7) 

 

A few auxiliary functions are needed for simplifying 

the specification. They are presented in declarations 8 to 

11. The            and           functions represent 

the actions of enabling and disabling capabilities, 
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respectively. They take a set of capabilities and 

enable/disable them in an agent. Therefore, they return an 

agent with new capabilities. The        function takes sets 

of pairs of relationship types (mandatory, optional, 

requires and excludes) and OC capabilities (        
           ) alongside a relationship type (the second 

argument of       in Declaration 10) for filtering and 

returns the set of OC capabilities whose relationship type 

is the same as the type determined as the second argument 

of       . For instance, this function can assist in 

extracting the OC capabilities that are mandatory or 

needed. Declaration 11 denotes a simple auxiliary 

function which returns all the capabilities (either active or 

inactive) of an agent.  
 

                                   (8) 

                                  (9) 

        (                  )         
             

(10) 

                                (11) 

Specification 4. The specification of the used election 

algorithm is in the form of a function (       in 

Declaration 12) that returns the set of pairs of agents and 

the set of OC capabilities (  (                 ) ) 

denoting which OC capability or capabilities of each 

agent must be activated. Regarding Declaration 13, 

          is another auxiliary function related to the       
function that returns the elected OC capabilities 

(           ) for an agent (     ) through an election 

( (                 )). 
 

       (                 )             
  (                 ) 

(12) 

           (                 )       
             

(13) 

 

Having these functions in place, we are ready to 

define the self-configuring mechanism in form of function 

application. To do so, we need to declare the required 

variables (Declaration 14). 
 

            
               *         + 

(14) 

 

Equations 15 and 16 show a few abbreviations and 

variable definitions to simplify Specification 5. 

             are the mandatory, optional and required 

OC capabilities involved in the sco/c architecture. 

Equation 17 is of particular interest. It shows the 

candidates of agents (and their capabilities across the 

system) that can take part in the sco/c architecture 

according to the regulation and expression (see the 

definition of             in Definition 16). These 

candidates resulted as follows: for each agent, its OC 

capabilities (members of              (  ) ) that are 

involved in              is obtained. The excluded 

capabilities are used later for disabling the unnecessary 

OC capabilities (see Equation 19). The resulting 

candidates and the set of the involved capabilities are 

finally given to the       function which determines the 

required OC capability or capabilities for activation.  

                            (         
    (            ))

 (15) 

              

          (                         )

           (                        )
           (                        )

 (16) 

            

    ⋃(                             (  ))

 

   

 (17) 

                (                       ) (18) 

Specification 5. Finally, to specify the self-

configuration mechanism, the system is specified in 

Equation 1, and the self-configuration mechanism is 

shown in form of a function application. Initially, for each 

agent, the excluded OC capabilities are disabled, and then, 

the elected OC capabilities of that agent are enabled. The 

formed OC system has thus all the OC capabilities 

required for the selected o/c architecture enabled by the 

regulation capability of the agents. 
 

        *         +  
                     
                (         (           )  
              (      (                 
            )   ))  

(19) 

 

5.2 Verification 

In order to verify the self-configuration property of the 

sco/c architecture, we use LTL model checking. What is 

important in terms of self-configuration is that the system 

will be eventually in a state of proper operation [4], which 

means that: First, an o/c component configuration has 

been selected. Second, the OC capabilities are 

successfully identified, and the agents that must activate 

them are specified via the election algorithm. Third, the 

activation/deactivation of OC capabilities is done.  

Having all the above mentioned conditions, it can be 

said that ―the system is in a valid o/c component 

configuration‖. These phrases can be expressed in the 

form of an invariant (Formula 20) where        comes 

from Equation 19, and   comes from Declaration 14. 
 

         (        
             (        (            )) 

(20) 

 

The          function is an auxiliary function that 

checks the validity of the OC system. It uses a condition 

variable ( ) that the sco/c architecture has been selected. 

Therefore, the OC capabilities are extracted from the OC 

system and used for comparison so as to see the conformation 

to the valid model returned by the          function.  

It should be noted that the validity of sco/c depends on 

the rules defined in the regulation. With wrong rules 

(such as impossible configuration or unreachable 

conditions), sco/c does not work, and the system cannot 

be configured. These conditions include applying those 

rules that employ non-existing OC capabilities or when 

the needed capabilities cannot be found in the agent and 
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its neighborhood. Also, when none of the conditions can 

be evaluated to     , and sco/c cannot self-configure. The 

same can be said when more than one o/c architecture can 

be selected. In this condition, the agents will split into two 

or more groups each trying to achieve a specific o/c 

architecture. Depending on the OC capability distribution 

among each group, different outcomes can be expected 

(such as zero, one or more successful o/c architecture 

configuration). But, any outcome in this state cannot be 

accepted, and even, if it works, it will be accidental.  

The verification was performed successfully for various 

possible scenarios using the Maude tool. The target 

scenarios were divided into two types. The focus of the first 

type was on situations in which a variant of the o/c 

architecture could be applied. The goal was to see whether 

the proper variant was selected and activated in such 

scenarios. The second type of scenarios included the ones 

in which no variant were applicable. Also, the verification 

was performed for impossible and unreachable 

configurations. In all of the scenarios, the specification of 

the sco/c architecture proved to be sound and correct.  

6. Case Study 

In this section we demonstrate the applicability of the 

sco/c architecture on the example illustrated in subsection 

4.2 using our formal specification and verification 

approach. We will first specify the general form of the 

problem, meaning the number of tasks and robots is not 

limited to what has been specified in [5] and [16]. Next we 

will use this general form to verify the illustrative example. 

6.1 General Description 

Most of the specifications needed for this example have 

been already provided. Apart from our intention to present a 

case study for the application of the sco/c architecture, we 

also intend to specify normal operations (along with the 

sco/c architecture specification), resulting in a complete 

system specification. Specification 6 describes a generic 

robot in which       has already been introduced in 

Declaration 6.                    is used for indicating a 

set of normal capabilities (sensors and actuators), and 

          for a set of resources that the robot is working 

on. This set can be   when there is no resource. 

Specification 6. Robot definition. 
 

       (                        
          ) 

(21) 

 

We defined a simple behavior for each robot based on 

[6] and then applied the general theme discussed above. 

The behavior of each robot in our specification consists of 

three general actions, i.e., acquire, process and release 

(Specification 7): the resource is acquired, processed and 

finally released. It is important to note that no action must 

be done unless the sco/c architecture is formed. This 

guarantees the formation of the self-configuration phase.  

As discussed in the previous section, the          
function has the responsibility of checking the 

conformance between the current formed architecture and 

the desired one. We use this function as a guard (whose 

result is used as the Boolean parameter in equations 22 

through 24) for all of the actions in our case study.  

          indicates the set of all available resources; 

with each acquire operation for a resource (         as 

the third argument for the         function) or when a 

resource is completely processed, it is removed from the 

resource set. Because the definition of       has an 

occurrence           that indicates the resource the 

robot is working on, when this set changes, the       
needs to change. Therefore, the       is considered as 

both input and output in declaration 22 to 24. By the 

        function (Declaration 23), a task is performed on 

a resource or resources. Finally, when the process is done 

or a problem happens (e.g., one of the robot tools is 

broken), the resource is released by the robot (Declaration 

24) and added to the resource list. 

Specification 7. Simple behavior for the robots. 
 

                                  
                 

(22) 

                            (23) 

                                
                 

(24) 

 

After using these behaviors and completing the 

required definitions (i.e., specifying                  , 

          ,          , etc.), the LTL formula 20 is 

verifiable. The next subsection completes these items for 

the illustrative example and performs the verification. 

6.2 Specification and Verification of the 

Illustrative Example 

This subsection presents definitions specific to the 

illustrative example. 

The first step is to define the regulation which consists 

of two rules (            and            given below). 

Based on the computing power of the robots (as the 

condition), one of the o/c variants can be selected: The 

OC middleware (mentioned in section 3) is more suitable 

for higher computational power since it needs an instance 

of the middleware running on each robot, making it 

suitable for the decentralized variant, while the RIA 

controller needs less computational power compared to 

that of the OC middleware. 
 

                       (25) 

            (                
   *                                       
                                   
                                  
                                   
                       +) 

(26) 

           
 (                *                    

(27) 
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                                          +) 
            *                       + (28) 

 

Definition 25 specifies                as the 

required condition. This function returns true when the 

computational power is suitable for running the OC 

middleware; when the function returns false, it means the 

RIA controller should be used. 

Based on the above specification, the          function 

should be called with                as the first 

parameter. Due to space limitation, the specification of 

expression capability has been ignored, but it can be easily 

extracted from Fig. 4. Declaration 29 shows the 

specification of       used in the robot definition for the 

illustrative example. As can be seen, the       components 

have been replaced by definitions from this section. 

         has been defined as sequence of  

                 , meaning that each task is represented 

by the corresponding tool. When each task is performed, the 

first task in the sequence is removed from         . An 

empty         represents a resource on which all the 

required tasks have been successfully performed. 
 

      (                       
             (                         ))  
                       (                
              )) 

(29) 

                  *                    + (30) 

            (                 ) (31) 
 

Now robots for the illustrative example can be defined 

using Declaration 32.  
 

                (32) 
 

As for the verification, the LTL formula 20 was 

verified using the Maude tool. Also, verification was 

performed after the self-configuration phase in order to 

verify the          function as the guard of declarations 

22 through 24. The verification phase showed that when 

the condition of the o/c component configuration changed, 

the system stopped operation, configuration was chosen, 

and then the system resumed normal operation. In cases 

that were designed for impossible operation, as expected, 

the system stopped all operations. 

7. Conclusions and Future Work 

In this paper, the sco/c architecture which uses the 

idea of cell differentiation has been presented in order to 

achieve self-configuration in the o/c component level. In 

order to support this idea, an architectural meta-model 

that considers the OC system as a collection of agents 

with some capabilities has been proposed. Among these 

capabilities, there are OC capabilities representing the 

capabilities that can perform operations related to the o/c 

architecture. Also, these capabilities are responsible for 

the self-configuration in the level of architecture itself. 

The sco/c architecture uses some rules provided by the 

architect based on the parameters of the system or 

environment. This architecture is then configured, and 

finally, the system operates. However, we believe that the 

rules should be adapted accordingly by considering the 

prior executions. In biology this notion is called genetic 

memory [9]. As a future work, we are planning to use the 

mechanisms related to this notion in order to improve the 

bio-inspiration and to step closer to living systems. Also, 

we consider the use of a simple ontology in the OC systems 

so as to create a semantic base. This can help to create a 

knowledge-based self-awareness that can assist greatly in 

cases like the selection of the proper o/c component 

configuration in the sco/c architecture. This potentially can 

increase the interoperability between organic systems. This 

can be especially useful when two or more ubiquitous or 

pervasive systems are needed to cooperate. 
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