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Abstract  
Nowadays, online social networks have a great impact on people’s life and how they interact. News, sentiment, rumors, 

and fashion, like contagious diseases, are propagated through online social networks. When information is transmitted from 

one person to another in a social network, a diffusion process occurs. Each node of a network that participates in the 

diffusion process leaves some effects on this process, such as its transmission time. In most cases, despite the visibility of 

such effects of diffusion process, the structure of the network is unknown. Knowing the structure of a social network is 

essential for many research studies such as: such as community detection, expert finding, influence maximization, 

information diffusion, sentiment propagation, immunization against rumors, etc. Hence, inferring diffusion network and 

studying the behavior of the inferred network are considered to be important issues in social network researches. In recent 

years, various methods have been proposed for inferring a diffusion network. A wide range of proposed models, named 

parametric models, assume that the pattern of the propagation process follows a particular distribution. What's happening in 

the real world is very complicated and cannot easily be modeled with parametric models. Also, the models provided for 

large volumes of data do not have the required performance due to their high execution time. However, in this article, a 

nonparametric model is proposed that infers the underlying diffusion network. In the proposed model, all potential edges 

between the network nodes are identified using a similarity-based link prediction method. Then, a fast algorithm for graph 

pruning is used to reduce the number of edges. The proposed algorithm uses the transitive influence principle in social 

networks. The time complexity order of the proposed method is O(n
3
). This method was evaluated for both synthesized and 

real datasets. Comparison of the proposed method with state-of-the-art on different network types and various models of 

information cascades show that the model performs better precision and decreases the execution time too. 

 

Keywords: Transitive Influence; Network Inferring; Diffusion Network; link Prediction, Random Network. 

1- Introduction 

Nowadays, online social networks play an undeniable role 

in propagating information. People are capable of creating 

contents on a medium to influence other people’s opinions. 

With the increasing importance of online social networks, 

researchers have been interested in social network analysis. 

Several methods have been introduced for studying social 

network behavior on different topics such as information 

diffusion [1], community detection [2] - [4] link prediction 

[5] - [8] influence maximization [9], sentiment analysis 

[10], and expert finding [11]. News, sentiment, rumors, 

ideas, innovations, and knowledge diffuse over social 

networks as different types of information. Hence, 

modeling information diffusion network for any type of 

information lets researchers apply various social network 

analysis methods to understand the behavior of people for 

further social studies. Knowing that information spreads 

over an underlying network, information diffusion is 

modeled as a graph in which people are the nodes and the 

relations between them are the edges.  

Like contagious diseases, a diffusion, also called a 

contagion, occurs when a piece of information is 

transmitted from one node to another through the edges 

between them over the underlying network [12]. In this 

field, any epidemic event disseminated over a social 

network can be considered as a piece of information. When 

a member (node) mentions or copies any piece of 

information from another member (its neighbors), then, it is 

called to be infected by a contagion. During the process of 

information diffusion, nodes get infected by a contagion, 

and an observable footprint is the time of infection. Like 



     

Emadi , Rahgozar  & Oroumchian , Inferring Diffusion Network from Information Cascades using Transitive Influence 

 

 

308 

epidemic diseases, in the outbreak of a disease in a society, 

the viruses spread from one person to another, while it is 

unclear by whom each person is really infected. However, 

the infection time for each person is observable. Similarly, 

in viral marketing, no one knows who influenced a client, 

but we know when a client bought the new product. 

The main challenge in the field of information diffusion 

analysis is the lack of knowledge on the structure of 

underlying network. To study the behavior of people in a 

social network, the initial requirement is to infer the 

network structure from the observed data. Inferring the 

network structure of neurons in neuroscience [13], 

sentiment in online social networks [14], [15], community 

detection [16], or the genes in biology [17],[18] are similar 

points of interest in current researches. The aim of this 

article is investigating an epidemiology approach to infer 

the structure of an influence network from a set of 

information cascades, i.e., the time history of various 

events occurred in a network. 

In recent years some models have been proposed to infer a 

network from the observed information cascades. In most 

cases these models try to solve an optimization problem 

[17]–[20]. This causes a long runtime which is not 

applicable for real-world networks with a large size. In 

recent years, with the development of content along with 

the graph structure, works have placed more emphasis on 

the use of content. For this reason, less effort has been 

made to extend pure structure-based algorithms. For 

example, in the article [21] work is done on the three 

features: “information, user decision, and social vectors”. 

In the [22] work is done on the 5 different information 

source and data mining technique to find hidden influence. 

In this study[23], yang and friends used the community 

structure in addition to the information cascade. But in this 

research, we have worked on pure structure and tried to 

provide an algorithm for this purpose. For this reason, in 

order to make a fair comparison, we have compared our 

work with solutions based on pure structure. Of course, this 

method can be used to continue the work in any of the 

combined works of structure and content. 

In this paper, we propose a method for modeling the 

diffusion which results in inferring the diffusion network. 

The approach of this method is algorithmic and non-

optimization. With the help of link prediction concept and 

proposing an algorithm for pruning the transitive edges in a 

graph, a time-efficient method is proposed. First, we look 

for a formula for modeling the influence of a user on 

another user. Various formulas are presented based on 

social rules to find the appropriate one. Experimental 

results show that one of these formulas is more suitable for 

modeling. The selected model has a better result based on 

the f1 measure. These experiments are based on 

synthesized data. Second, with the use of the appropriate 

model, the propagation network will be inferred. 

Approximately, we have an influence rate between each of 

the two nodes, and a generated graph seems like a complete 

graph. In the real network, we have a direct edge among 

the smaller number of users. These additional edges are due 

to the indirect influence (transitive influence) [24], [25] of 

individuals on one another. We present a heuristic 

algorithm that identifies and eliminates indirect influence. 

This identification is based on a social rule called transitive 

influence. The time complexity of this algorithm is O(n3) 

which, in comparison with similar algorithms, has an 

efficient execution time. The experiments show that the 

proposed method outperforms several state-of-the-art 

models in both synthetic and real dataset. 

The remainder of the article is organized as follows: In the 

second section, the problem of the inference of diffusion 

network is defined, and in the third section, the related and 

previous works have been reviewed. In the fourth part, the 

explanation of the proposed method is discussed. Section 

five shows the results of the experiments and evaluations of 

the proposed algorithm are investigated. For this reason, we 

use synthesized and real data sets. And in the last section, 

we conclude our work. 

2- Problem Definition 

For modeling a diffusion process, information cascades can 

be employed. Assume user A has communication with user 

B in a social network. If user A joins a social campaign, 

then the effect of this event on user B is joining the 

campaign as a similar action. The process when a piece of 

information or an action spread from one node to another 

over a network generates information cascade. A cascade 

can be specified as two vectors of T and Q. The vector T = 

[t1,…,tn] represent a time series of infection times of nodes 

and the features of the contagion (such as user 

identification) represented in the vector Q = [q1,…,qn]. For 

the cascade C(T,Q), there are two assumptions [26]: it’s not 

obvious which of the nodes is affecting each node, and 

each node can be affected by many nodes. 

Consider a hidden network with graph G’ wherein multiple 

cascades have been spread over that. The main effort is 

finding graph G which is an estimation of G’, from the 

observed cascades. Assume that we have a set of cascades 

({C1(T1,Q1), … CN(TN,QN)}); the main problem in 

“inferring diffusion network” is finding the underlying 

network which caused these cascades. 

3- Related Works 

The problem of inferring influence network or modeling 

information diffusion network may be divided into multiple 

sub-groups considering several aspects of this problem. For 

example, in the assumptions of one model, the set of 

information cascades are fully observed [26], [27], but in 

some, there are missing data in the cascades [28], or the 
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dynamics of network may change over time in some 

models [28], [29] whereas the other models assume a time-

invariant network [26]. Considering a set of information 

cascades which are infection time series of a network’s 

nodes, some models proposed to infer the underlying 

network over which the information diffuses. As far as 

finding the best possible graph is NP-Hard, in most cases, 

these models apply methods like Maximum Likelihood 

Estimation (MLE) to solve the optimization problem which 

causes a long runtime. As the output of these models, two 

main aspects of diffusion network would be characterized: 

structure of the network and its temporal dynamics [27].  

The CONNIE [30] method uses convex programming to 

learn a network under a randomly uniform distribution of 

transmission time and recovery time. NETINF [26] 

considers a static network, and the proposed model uses a 

tree-shaped graph to infer the relationships between nodes 

from information cascades. In contrast to NETINF, new 

models have been proposed which assume the network is 

not static, and the pathways would change over time, and 

they are dynamic. The NETRATE [27] method, having a 

set of cascades, maps the parameters of the transmission 

rate models for each edge. Based on NETRATE, a new 

method called INFOPATH [29] was developed. The 

INFOPATH method calculates a pairwise transmission 

probability for edges between nodes based on information 

cascades. Then an optimization problem is formed to select 

the best edges. The best edges that model information 

cascades with the least error. With the use of stochastic 

convex optimization, INFOPATH solved the problem of 

inferential network inference in less time. In previous 

methods, the assumption of the homogeneity of the 

relationship between people in an area was significant. But, 

the hypothesis of the researchers in MMRATE [31] is that 

of individuals who are different in different topics. This 

approach focuses on the multifaceted relationship between 

the network members. The main focus of TOPIC 

CASCADE [32] is the prediction of the transmission time 

of a publication on the network. This method solves, as in 

previous methods, an optimization algorithm for estimating 

the parameters of the transmission model. TOPIC 

CASCADE uses an efficient proximal gradient algorithm 

based on a block coordinate descent for estimation. Other 

methods also take into account information from contexts 

such as text content and individuals. In NIMFC [33], 

different dimensions of information cascades, including: 

"time, and topographic characteristics of cascades," "user 

attributes," and "information content" are used to infer 

diffusion network. 

4- The Proposed Method 

In the proposed method, the goal was to find the influence 

network of the nodes in the input data with some 

information cascades as input data. Information cascades 

have the time for the activation of each person.  

Accordingly, in this method, formulas for "modeling the 

impact of individuals on each other" have been presented. 

Various parameters extracted from the information 

cascades have been used to express formulas. The 

parameters that have been extracted from the cascades are 

the time interval of activation of two people in a cascade 

(∆tab,c), the number of cascades where the person is 

activated (ca), and the number of times a person “b” has 

been activated after the person “a” (hab). In this research, 

we have tried to provide a model that is general and 

capable of responding to different types of networks. For 

this purpose, various models have been presented with 

different combinations of extracted parameters. Different 

models were tested in a variety of ways to achieve an 

acceptable general model. Of course, the models presented 

are based on the rules governing human relationships in 

social networks. Information cascades display the time of 

activation or the participation of a node in a particular 

publication in the order of the event time. 

 

 Fig.  1. The schematic image of the suggested method. With regard to the 

collection of information cascades, at step 1, the impact of individuals on 

each other is firstly modeled. This action causes all potential edges 
between the network nodes to be identified and aggregated in a graph. 

Then, in step 2, by applying the pruning algorithm on the potential graph, 

the target graph is deduced. 
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In this research, by evaluating each cascade, the rate of the 

influence of the nodes on each other, was calculated. We 

defined w(a,b) as the influence rate of a on b. In each 

cascade, by observing the activation of b after a, the 

amount of w(a,b) increases. We needed the formula to 

express how each observation affects the w(a,b) 

calculation. In each information cascade, only the 

activation time of the node is visible, so the only useful 

parameter is the activation time. Other parameters can also 

be used to calculate w(a,b), including "the number of 

caches in which a comes after b," and "the number of 

cascades where a or b exists."  

In Table 1, the parameters extracted from the information 

cascades have been introduced. "The activation times of a 

node after another node is activated," "the time interval 

between the activation of a node with the activation of 

another node," or "the frequency of activating a node 

individually" are some of the extracted parameters. In this 

research, using the same parameters, various models have 

been provided for calculating w(a,b); their list is given in 

Table 1. 

In an output graph between two vertices a and b, where 

w(a,b) is not zero, we considered an edge (step 1 of Fig.  

1). In this way, the output graph had many edges. Most of 

these edges were derived from our formula of computing 

the rate of the influence of the nodes on each other(w(a,b)), 

and in fact, we do not have such a direct relationship 

between the two users.  

Table 1.  Different functions for different Models of scoring the impact of 

nodes on each other. 

Model Formula 

Model 1 (F. 1) [26]  
 

  
 

Model 2 (F. 2) 
   

       
 

Model 3 (F. 3) 
   

       
  
   
  

 

Model 4 (F. 4)  
 

  
  

   
       

 

Model 5 (F. 5) 
   

       
  
   
  
   

 

  
 

Model 6 (F. 6) ∑     

Model 7 (F. 7) 
   

       
  ∑     

Model 8 (F. 8) 
   

       
  
   
  
  ∑     

With a technique, we must recognize the “real edges” of 

the “non-real edges”. With the help of the above functions, 

the influence rate between two nodes is obtained. For some 

nodes, this number represents the direct effect of these two 

on each other, which we call “real edge”. But for some 

nodes, this effect, which has been seen many times in 

cascades, is due to the indirect effect of two nodes. These 

edges are called “non-real edge”, which is the result of 

“Transitive Influence” (Step 2 of Fig.  1). For this purpose, 

a heuristic derived from the social networking space was 

used. To this end, we tried to find the edges of the 

transitive influence. The algorithm presented on this 

heuristic is explained in the following section. 

4-1- Proposed user-user Influence Models 

Different Models have been presented to calculate the 

influence rate of one person on another. In all the previous 

studies, this rate was calculated during an optimization 

process. However, in this method, the rate has been 

calculated by reading the cascade information once. In 

some ways, the method was taken from an optimization 

problem toward a simple modeling problem and solves the 

problem in that space. 

In most of the conducted researches, they consider Model 1 

[26], which is a simple time-based model. And because 

they raise an optimization problem based on this, they don't 

need another model. But in this research, we want to 

determine transitive influence. For this issue, it was 

necessary to develop and examine different models. 

Fig.  2.  Transitive influence: (a) node c is affected by node a by 0.8, and 
node b from node c is affected by 0.7. influence of node c on node b and 

node a on c causes node a to have an indirect influence on node b of 0.5. 
(b) As in part a, node b is indirectly affected by node a. 

In Table 1., Model 1 and 6 consider the effect of the 

parameter of the time interval of activation of node b after 

node a in cascade C in two ways. This formula has been 

defined exponentially in model 6 for exponential waiting 

time models and power-law in function 1 for power-law 

waiting time models. The function 2 defined as division of 

    by (       ); in other words, "the number of times b 

is after a" divided by "the number of times b could have 

come after a." Functions 4 and 7 have been constructed 

from the combination of functions 1 and 6 with function 2. 

The simultaneous effect of these two types of functions has 

been considered in functions 4 and 7. The function 3 

multiplies the net effect of b on a in the overall coefficient 

of influence b to calculate a more normal value than that of 

function 2. Functions 5 and 8 have been constructed from 

the combination of functions 1 and 6 with function 3. 
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4-2- Algorithm for Network Inference 

With the aid of the user-user influence model, for all 

possible edges, the edge weight was calculated. In fact, we 

obtained a weighted graph close to the complete graph. The 

weighted graph obtained by the scoring function could not 

be considered as the actual graph of diffusion network 

because many of the edges of this graph were derived from 

indirect influence. But, our goal was to find the direct 

impact of nodes from each other. 

For this purpose, an algorithm was proposed for pruning 

the indirect edges of the graph and reaching the direct 

influence graph. For example, in Fig.  2(a), the weight of 

the edges between the three nodes a, b, and c is calculated 

using the scoring function. The weight of the edge (a, c) is 

0.8, that of the edge (c, b) is 0.7, and that of the edge (a, b) 

is 0.5. Node b is influenced more by node c and less 

influenced by node a. Also, node c itself is influenced by 

node a. The weight of the edge (a,b) is less than these two 

other edges. According to the indirect influence principle, 

this edge is due to the indirect influence node a on node b, 

and it is likely to be said that there is no direct influence 

between node a and node b. In fact, b through c is 

influenced by a. So, we can remove this edge. 

The indirect influence does not always occur at a distance 

as large as a node. The distance between two individuals 

who accept the indirect influence can be more than one 

node (Fig.  2(b)). In this case, we define a f(a,b) parameter to 

calculate the rate of indirect influence. In line 7 of 

algorithm 1 (Fig.  3. ), parameter f(a,b) is the maximum flow 

between the edge a and edge b in the graph G(V, E-(a,b)). 

If f(a,b) is larger than w(a,b), straight edge (a,b) has been 

achieved on the basis of indirect influence and should be 

eliminated (line 8-10 of algorithm 1). 

Table 2.  Table of Notations for Proposed Algorithm. 

G 
Graph of user of social network and their possible interaction 

in all information casscades  

E 
List of possible interaction between users of Social Network  

(Edge List) 

V List of users of Social Network (Vertex List) 

W Weight list of extracteg graph from Step 1 

w(a,b) 
Capacity of edge (a,b) derived from Step 1 of proposed 

method based on formulas of Table 1. 

E’ 
List of interaction between users of Social Network after graph 

prunning 

W’ Weight list of extracteg graph after graph prunning 

According to the selected function, indirect influence is 

smaller than direct influence. For pruning the edges, we 

start from the edges with high-weight. If we start with 

light-weight edges, the algorithm does not work properly. 

 

 

 

1    input: G(V,E,W) 

2    output: G`(V,E`,W`) 

3    for all (a,b) ∈ E w’(a,b) ←0 //use w’ as capacity of 

edges 

4    E`←{} 

5    sort the edges of E into decreasing order by weight w 

6    for each (a,b) ∈ E, taken in decreasing order by weight 
7        f(a,b) = FindMaxFlow(a,b, G`(V`,E`,W`))    

8     if w(a,b) > f(a,b) then: 

9 E` ← E`  (a,b) 

10 w’(a,b) = w(a,b) 

11   return G`(V`,E`,W`) 

Fig.  3. Algorithm 1: Pruning the Indirect Edges 

4-3- Efficient Algorithm for Pruning Phase 

Runtime of the algorithm 1 was not good. We needed a 

faster algorithm (algorithm 2 in  Fig.  4. In this algorithm, the 

edges of E were sorted in graph G into decreasing order by 

weight w (Line 5). Then, in line 6, we started with the 

maximum weight edge. If a path from node a to node b was 

not available in the graph G', we added the edge (a,b) to the 

graph G' (Lines 7-8). The findPath(G,a,b) function in this 

algorithm is a Boolean function that returns true if there is 

a path from node a to node b in graph G. The algorithm 2 

had a better order in terms of time complexity than 

algorithm 1. Of course, with the help of various 

experiments, it was shown that they return the same results. 

5- Analysis of Algorithms 

In algorithm 1, the order of execution for the sorting (line 5 

of algorithm 1 in Fig.  3) is equal to O(|E| log |E|). For the 

second part (lines 6-10 of Fig.  3. ) of this algorithm, we can 

use the Ford–Fulkerson algorithm [34] to calculate the 

maximum flow. The running time of the Ford–Fulkerson 

algorithm is equal to O (|E’| max |f|). As a result, the total 

running time of the second part is equal to O(|E| (|E’| max 

|f|)).  

If we use the Edmonds–Karp algorithm [34] to calculate 

the maximum flow, the total running time of the second 

part is equal to O(|E|(|V’|+|E’|
2
)). Because the running time 

of the Edmonds–Karp algorithm is equal to O(|V|+|E|
2
), the 

total running time of proposed algorithm is O((|E| 

log|E|+|E|(|V’|+|E’|
2
)). |V|=|V’|. The graph G' is very close 

to the tree, and consequently, the size of |E’| is equal to 

c|V|. The size of |E| is equal to |V|
2
 because G is very close 

to the full graph. After replacing the new value in the 

formula, we have O(|V|
2
log|V|+|V|

4
). Finally, we have a 

total time complexity of O(n
4
) for algorithm 1. For 

algorithm 2, we have sorting section (line 5 of algorithm 2 
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in Fig.  4) too. For the second section of algorithm 2, we 

have O(|V’|+|E’|) for finding the path method, and the 

running time of the second part is O(|E|(|V’|+|E’|)). The 

total running time of the algorithm 2 is O((|E| 

log|E|+|E|(|V’|+|E’|)). After replacing a new value to the 

formula, we have O(|V|
2
log|V|+|V|

3
). Finally, we have the 

total time complexity of O(n
3
) for algorithm 2. In the 

article on INFOPATH [29], there are no references to 

running time of its algorithm. But our experiments show 

that the running time of INFOPATH was longer than that 

of the proposed algorithm in this research. 

1     input: G(V,E,W) 

2    output: G’(V,E’,W’) 

3    W’←W 

4    E’←{} 

5    sort the edges of E into decreasing order by weight w 

6    for all (a,b) ∈ E do: 

7  if NOT findPath(G,a,b) Then: 

8   E
’
 ← E

’
  {a,b} 

9   return G’(V,E’,W’); 

Fig.  4.  Algorithm 2: Optimization of the Execution of the Algorithm 1 

6- Results and Experiments 

For the evaluation of our work, we needed data sets to 

evaluate the proposed method. Due to the inaccessibility of 

the main graph in this type of problem, synthesized data 

and real dataset were used to evaluate the proposed 

methods. Three types of synthesized networks were 

generated using Kronecker [35] graph models: hierarchical, 

random, and core-periphery. Also, were generated the 

information cascades with two types of cascade models: 

Rayleigh and exponential. For assessment of proposed 

method with real data, a real dataset from BrightKite social 

network [36] was used. In this section, we retrieve the 

graph or network structure by examining the information 

cascades. In the following, we evaluate the correctness of 

the algorithm by comparing the resulting graph with the 

ground truth graph. We used three measures, precision, 

recall, and f1-score, to evaluate the matching of the 

network with the main network and to evaluate and 

compare the methods. The precision is the fraction of 

inferred edges that are inferred correctly. The recall is the 

fraction of edges in the ground through network that is 

inferred correctly. F1-score is computed as the combination 

of precision and recall (Eq. (1)). 

                       
                

                
                                    

(1) 

In the remaining sections, we compare the effectiveness of 

different models in the first subsection, show the 

experimental results which compare the proposed method 

with the state-of-the-art method in the next subsection, and 

in the last subsection, present the result of the experiment 

on the runtime of the proposed method. 
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Hierarchical (Exponential) Hierarchical (Rayleigh) 

  

Core-periphery (Exponential) Core-periphery (Rayleigh) 

Fig.  5.  Comparing the F1-score of the proposed algorithm with the various user-user influence models (influence rate functions) for the synthesized data with 

constant network user size (1024 user) and various cascade size from 100 to 10000 . 

6-1- Effectiveness of Different Models 

By determining the impact value of each node on another 

node, approximately, we will have the weights for all the 

edges. The proposed algorithm has been used to find the best 

influence rate model. Here, we compared all the scoring 

functions introduced in the previous section using the 

proposed method and algorithm. To this end, we evaluated 

various models for different modes of cascade size and 

network size. For comparison, synthetic data was used. The 

SNAP tool [37] has been used to produce different types of 

networks and cascades. Three types of networks (random, 

hierarchical, and core-Periphery) and two types of cascade 

models (exponential and Rayleigh) were used for this 

assessment. For the first mode, the network size was constant, 

and the number of cascades varied.  
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Hierarchical (Exponential) Hierarchical (Rayleigh) 

  
Core-periphery (Exponential) Core-periphery (Rayleigh) 

Fig.  6.  Comparing f1-score of the proposed algorithm using various user-user influence model (influence rate functions) for synthesized data with 
constant cascade number (2000 cascades) and various network size from 32 to 2048. 

The number of nodes in the network was 1024. The number of 

cascades varied from 100 to 10000 (100, 200, 300, 500, 100, 

2000, 3000, 5000, and 10000). Fig.  5 shows that the increase 

in the number of information cascades from 100 to 10000 had 

influenced the performance of the proposed functions. This 

comparisons show that the proposed functions 3, 7, and 8 were 

more stable against variation of cascade size and show better 

performance. By increasing the number of cascades, which is 

the number of our observations, we will have a better 

f1measure value. That's why all the diagrams are incremental. 

Functions 7 and 2 behaved quite similar. This shows that the 

different parts of the two formulas (     ) had no effect on 

performance improvement. Of course, this difference was 

equivalent to function 6. 
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Random (Exponential) Random (Rayleigh) 

  

Hierarchical (Exponential) Hierarchical (Rayleigh) 

  

Core-periphery (Exponential) Core-periphery (Rayleigh) 

Fig.  7.  Comparing f1-score of the proposed algorithm with INFOPATH for the synthesized data with constant network user size (1024 user) and various cascade 
size from 100 to 10000. 

Table 3. Collection of Information Cascades Extracted from the Brightkite Social Network. 

Cascade type How to select users 
Number of 

users 

Number of 

edges 

Number of extracted 

cascades 

Type 1 Check in every day 5159 35280 53399 

Type 2 Every two days, three times check in 3677 25563 42802 

Type 3 Every day twice check in 2805 19871 35826 

Type 4 Every two days, five times check in 2241 15690 30386 

The value of f1measure for function 6 was also high, and 

this case shows that function 6 when combined with 

function 2 does not have much effect on efficiency.  

Function 2 has enough information in itself, and adding 

formula of function 6 will not have much improvement. 

The function 6 in the eight modes of the nine possible 

modes of data generated had a lower result, but only in the 

case of core-periphery exponential, the function 6 had a 

better answer. Of course, in this case, the function 6 

behaved similar to function 7. For other conditions like 

“core-periphery exponential,” function 3 had a lower f1 

value. The function 3 had many oscillations in different 

states of graph size and cascade numbers, and it was not a 

good option to choose as the selected model. If we want to 

choose a function that in most cases is close to the best, we 

can select the function 7 or 2. 

For the second mode, the cascade size was constant, and 

the network size varied. The number of cascade for the 

network was 2000. The number of nodes varies from 32 to 

2048 (32, 64, 128, 256, 512, 1024, and 2048). For this case, 

the cascade number was constant, and the number of nodes 

in the network was changed (Fig.  6); the diagrams have a 

decreasing behavior. The reason for the downside of the 

charts was that the number of cascades was constant, and 

the number of nodes increased. As a result, the ratio of the 

number of nodes to the number of cascades increased, and 

the accuracy of the detection of the main edges decreased. 
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As the charts demonstrated, the behavior of the functions in 

this mode (variable network size) was the same as in the 

previous state (variable cascade size). Our experiments 

show that function 7 gives a better result based on the f1-

score measure.  

6-2- Comparing the Proposed Methods 

Different methods have been proposed to infer the network 

from information cascades. Each of the methods models a 

few specific models of networks. The goal of all these 

methods is to find the best network that models the 

cascades that have happened. For this reason, their 

optimization method is sometimes applicable for several 

specific models of the network or some specific models of 

cascade production, and they do not do well in the rest of 

the network. Some methods, such as the INFOPATH, have 

an acceptable behavior for many types of networks. For the 

same reason, we compared the proposed method with 

INFOPATH. To compare our method with the INFOPATH 

method, we used synthetic and real dataset. 

 
Fig.  8.  Precision of proposed method and INFOPATH on BrightKite 

dataset results for five types of cascades. 

6-2-1 Synthesized Data 

To evaluate the proposed method, we produced synthesized 

data for all the different modes of the network. The SNAP 

tool [37] has been used to produce different types of 

networks and cascades. Three types of network (random, 

hierarchical, and core-periphery) and two types of cascade 

models (exponential and Rayleigh) were used for this 

assessment. The number of nodes in the network was 1024. 

The number of cascades varied from 100 to 10000 (100, 

200, 300, 500, 100, 2000, 3000, 5000, and 10000). Fig.  7 

shows that the proposed method was better than 

INFOPATH in term of f1-score measure. The proposed 

method is highly accurate compared to the INFOPATH for 

low cascades count. By calculating the average of all 

execution modes (which are created from the combination 

of 6 different random network modes, different number of 

nodes and different cascade sizes), the presented method 

has improved by an average of nearly 5% based on f1-score 

measure. 

6-1-1 Real Data 

The Bright Kite social networking dataset [36] was used to 

assess the effectiveness of the proposed method on real 

social networks. In the dataset which is selected from this 

social network, there were more than 4 million check-ins 

from over 58000 users, whose relation network is known. 

In the data-collection, there were 58228 users. There were 

214078 communication links between the users. The 

number of special places according to their unique 

geographical coordinates was 772966. This dataset was 

collected from April 2008 to October 2010. In this social 

network, each person declared his presence after entering a 

place. Over time, in the profile of each person, the list of 

places where he or she checked in would be visible. 
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Core-periphery (Exponential) Core-periphery (Rayleigh) 

  

Hierarchical (Exponential) Hierarchical (Rayleigh) 

Fig.  9.  Comparing running time of the proposed algorithm with INFOPATH for synthesized data with constant cascade number (1000 cascades) and various 

network size from 32 to 2048 (Redline: INFOPATH;Blueline:F.7). 

Also, for each specific location (for example, a restaurant 

or a cafe), frequent check-ins were recorded from different 

users. It was necessary to respond to the two challenges, 

information cascade generation and reducing the size of 

the datasets, by preprocessing the information to use this 

dataset to evaluate the proposed method on real social 

networks. 

Checking in the presence of different users for a location is 

considered as an information cascade. A user will check-in 

at a specific location (such as a cafe) for the first time, and 

this will be communicated to his friends on the social 

network. Then, the friends of that person check-in at that 

place. So, each information cascade in this dataset is a 

sequence of checking in for people in a specified location. 

There are over 700000 unique places in this dataset. But 

cascade is not made for all of them. 

If more than two people are checked in at one place, then a 

cascade will be created for that place. Due to the large size 

of this social network, a number of more active users were 

selected, and their information cascades were extracted  

(Fig. 8). Four types of cascades were generated. 

Experiments show that the proposed method had a better 

precision for all types of the cascade definition (Fig. 8). 

Averaged over all types of use case, this method provides 

an improvement of about 2% based on f1-score measure.  

6-3- Running Time Analysis 

In the previous section, the time complexity analysis of the 

proposed algorithm was presented. We have shown that 

the runtime is O(n
3
). We have executed proposed 

algorithm and INFOPATH in the same conditions. The 

results are showing in Fig.  9. The runtime of INFOPATH 

was acceptable for smaller values. But by increasing the 

network volume, INFOPATH runtime increased at high 

rates. The proposed algorithm for bigger networks has 

lesser runtime than that for INFOPATH.  

Due to the use of stochastic convex optimization to learn 

the parameters of the information cascade transmission 

model, the INFOPATH model is relatively faster than the 

other methods. The time complexity of INFOPATH 

algorithm is not explained in its article. The experiments to 

compare the runtime between the INFOPATH model and 

the proposed method were performed on a machine with 

64GB RAM and four processor cores.  
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6-4- Experimental Environment 

All programs are written in C++ language. SNAP library is 

used for INFOPATH algorithm. The SNAP library has 

also been used to generate dummy data. All the programs 

are run in the environment of Ubuntu operating system. 

The hardware used was a workstation with 32 processing 

cores and 64 GB of main memory. 

7- Conclusion and Future Works 

 In this research, various functions are proposed to model 

the impact of individuals on each other in the network. An 

algorithm based on the indirect influence principle is also 

presented to infer the graph of the influence of individuals 

on each other. We evaluated the proposed algorithm based 

on the various functions affecting the artificial data. As a 

result of these experiments, we selected model 7 for our 

proposed method. Then, the proposed method was 

compared with the INFOPATH method. The INFOPATH 

model, with hypotheses similar to the proposed method, 

attempts to infer an influence network based on 

information cascades. The INFOPATH model has been 

developed based on the NETRATE model and has been 

reported to be much faster in terms of runtime. The 

proposed method has been compared in terms of the 

accuracy of network inference and runtime with the 

INFOPATH model on most networks and possible 

dissemination modes. The comparison of the proposed 

method with the INFOPATH based on the f1 measure 

shows that the proposed method can better infer the 

network. The runtime of the proposed algorithm is of the 

order of O(n
3
). The INFOPATH article does not refer to 

the time complexity of the algorithm. Therefore, for 

comparison of these methods, the actual execution time 

was calculated. From the results of the experiments, the 

proposed method was found to run faster than the 

INFOPATH method. 

The performed experiments demonstrate that the 

combination of the time interval and counting parameter 

creates a better function to calculate the influence rate of 

individuals on each other. This research only deduces the 

desired graph based on the information cascades. 

Therefore, in order to continue to work, information in the 

content, such as re-tweet or mention, can also be used to 

improve accuracy. We can also continue to work on 

functions that improve the performance of the algorithm. 

Also, specific functions can be provided for real data 

based on the specific domain of the data. 
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