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Abstract  
 As a fundamental device in acoustic echo cancellation (AEC) systems, the echo canceller based on adaptive filters relies on the 

adaptive approximation of the echo-path. However, the adaptive filter must face the risk of divergence during the double-talk 

periods when the near-end is present. To solve this problem, the double-talk-detector (DTD) is often used to detect the double-

talk periods and prevent the echo canceller from being disturbed by the other end of the speaker’s signal. In this paper, we 

propose a DTD based on a new method that can detect quickly and track accurately double-talk periods. It is based on the sum of 

energies of the estimated echo and the microphone signals which is continuously compared to the error energy. A window that 

moves with time and tracks energy variations of the different input signals of the DTD represents a fundamental feature of the 

proposed method compared to several other methods based on correlation. The goal is to outperform conventional normalized 

cross-correlation (NCC) methods which are well-known in terms of small steady-state misalignment and stability of decision 

variable. In this work, the normalized least mean squares (NLMS) algorithm is used to update the filter coefficients along speech 

signals which are taken from the NOIZEUS database. Efficiency of the proposed method is particularly compared to the 

conventional Geigel algorithm and normalized cross-correlation method (NCC) that depends on the cross-correlation between 

the microphone signal and the error signal of AEC. Performance evaluation is confirmed by computer simulation. 
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1- Introduction 

The technique of acoustic echo cancellation (AEC) known 

for its interest in various applications of signal processing 

plays an important role in the field of telecommunications. 

The use of "hands-free" terminals allows maintaining the 

speaker’s freedom of movement and ensuring the comfort 

of conversations. When the acoustic echo is present in a 

troublesome way, specific treatment must imperatively be 

implemented to preserve the quality of communication. 

The object of such a treatment is to estimate the acoustic 

echo between the received signal (signal sent in the 

loudspeaker) and the output of the room (signal picked up 

by the microphone) then to subtract an estimate of this 

output’s signal without affecting the local speech signal in 

the case of double-talk (DT) [1,2]. This processing is done 

by using adaptive filtering where a double-talk-detector 

(DTD) is used to sense when the echo signal is corrupted 

by near-end signal. The role of this main function is to 

freeze adaptation of the filter coefficients when the near-

end speech is present in order to avoid divergence of the 

adaptive algorithm [3-5]. 

Other methods based on combined adaptive filtering 

without DTD retain the advantages of both fast 

convergence rate and small steady-state misalignment but 

suffer from the same problems encountered in this field, 

such as abrupt changes in the acoustic echo-path, 

surrounding noise, and tracking capability. Indeed, they 

are complex and consume more computing time [6, 7]. 

In this work, we propose an efficient DTD to solve the 

problem provoked by the acoustic echo with the capability 

to improve speech intelligibility during telephone calls. To 

do this, a simulation will be started to allow a comparative 

study with two other methods [8-11]. 

The paper is organized as follows, in Section 2, the 

acoustic echo canceller with the proposed DTD is 

presented. In Sections 3 and 4, the used methods and the 

proposed one are formulated. The computational 

complexity is illustrated in Section 5. Simulation results 

are discussed in Section 6. Finally, the conclusion is given 

in Section 7. 
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2- Acoustic Echo Cancellation 

The acoustic echo canceller is used to remove the echo 

created due to the loudspeaker-microphone environment. 

We present in Fig.1 the structure of the device based on 

the new DT-detection method. In this case, the proposed 

DTD is controlled with three input signals where the 

energies of the estimated echo ˆ( )y n  and the microphone 

signal d(n) are continuously compared to the error energy 

of the signal e(n). 

 

 
 

Fig. 1 Acoustic echo canceller with the proposed DTD 

Note that the far-end vector signal x(n)is filtered by the 

impulse response h modeling the room. At time n, the 

resulting signal (echo y(n)) is added to the near-end signal 

v(n) and background noise w(n) to give the corrupted 

microphone signal d(n). 

We have: 

 

d(n) = y(n) +v(n) + w(n)                                                   (1) 

 
x(n)is filtered through the impulse response h to get the 

echo signal:                                                               
 

y(n) = h
T
x(n)                                                                    (2)               

 

where: 

 

x(n) = [x(n)   x(n-1)   …   x(n-L+1)]
T
 

 h = [h0h1   …   hL-1]
T 

  

We have assumed that the length L of the vector signal 

x(n) is the same as the effective length of the echo-path h.  

At time n, the estimated echo ˆ( )y n  is created by the 

convolution of the coefficients vector of adaptive filter 

ĥ(n) with the received input vector signal x(n). 

 

ˆ( )y n
 
= ĥ

T
(n-1) x(n)                                                          (3) 

Where ĥ(n) = [ĥ0(n)   ĥ1(n)   …   ĥL-1(n)]
T
 

 

The estimated echo signal is subtracted from the 

microphone signal, and the error signal is therefore given 

by:
 

ˆ( ) ( ) ( )e n d n y n 
                                                         

(4) 

Error signal which represents the error of the impulse 

response estimation is used in the adaptive algorithm to 

adapt the L coefficients of the filter ĥ.  

Several algorithms have been used to update the adaptive 

filter coefficients to converge to the optimal solution such 

as least mean squares (LMS), normalized least mean 

squares (NLMS), recursive least squares (RLS), and affine 

projection algorithms [4,12-15]. As an adaptive filtering 

algorithm that allows updating the filter coefficients, we 

use NLMS [16] to validate the proposed method. This is 

one, of the most used adaptive filtering algorithms which 

is defined by: 

ˆ ˆ( 1) ( ) ( ) ( )
( ) ( )T

n n e n n
c n n


  


h h x

x x
                     

(5)  

Where ĥ(n +1) it is the next tap weight value, and ĥ(n) the 

current tap weight value of the adaptive filter. A constant β 

(0 <β < 2) controlling convergence is considered as a 

stabilization factor and a step size parameter used in 

updating the weight vector. The regularization parameter 

is a constant c > 0 that prevents division by zero [3, 12]. 

When the near-end signal is not present with any adaptive 

algorithm, the filter ĥ will quickly converge to an estimate 

of the echo-path h and this is the best way to cancel the 

echo. When the far-end signal is not present, or very small, 

the adaptation is stopped by the nature of the adaptive 

algorithm. When both signals are present, the near-end 

signal could disrupt the adaptation of filter ĥ and cause 

divergence. An effective DT-detection algorithm is used to 

stop adaptation of filter ĥ as fast as possible when the level 

of the near-end signal becomes appreciable in relation to 

the level of the far-end signal and to keep the adaptation 

going when the level of near-end signal is negligible. This 

is the case where it is important to use efficient DTD. 

3- Double-Talk-Detection  

DT-detection is used with an echo canceller to sense when 

echo signal is corrupted by near-end signal. Its role is to 

freeze the adaptation of the filter ĥ when near-end signal is 

present in order to avoid divergence of the adaptive 

algorithm. Typically, the DT-detection algorithm 

calculates a decision variable ξ(n) and the DT is declared 

when ξ(n) it is lower or upper than a threshold level 

T[10,11,17]. 

Methods based on DT-detection can be classified into two 

major categories, namely signal energy based and signal 

correlation based. Several methods such as cross-

correlation (CC) [18-22], coherence, voice activity 



    

Journal of Information Systems and Telecommunication, Vol.12, No.2, April-June 2024 
  

   

 

 

107 

detection, and fundamental frequency estimation have 

been proposed in the literature [23-26]. Methods based on 

cross-correlation between the far-end and error signals are 

then proposed. Moreover, approximate versions, such as a 

normalized cross-correlation (NCC), are developed but 

with a different combination of DTD input signals. 

Therefore, we will discuss in this study two of the most 

prominent methods in order to demonstrate their 

underlying ideas. 

3-1- Geigel Method 

A simple but elegant DT-detection algorithm was 

proposed by Geigel which is widely used for its easy 

implementation [8]. It is usually limited to network echo 

application where the echo level is typically 6 dB below 

that of far-end signal. It performs an amplitude level 

comparison between the maximum of a length LG 

observation of x(n) and the microphone signal d(n), where 

the decision variable is defined as : 

 

 max ( ) , ( 1) ,...., ( 1)
( )

( )

G

G

x n x n x n L
n

d n


  
        (6) 

 
LG it is a constant that determines the number of past 

samples of the far-end signal that are used for the DT-

detection. Decision is made by comparing ξG(n) with a 

suitable threshold level TG [19]. 

3-2- Cross-Correlation Method 

The first method based on the cross-correlation between 

the far-end signal and the error signal is proposed by Hua 

Ye and Bo-Xiu Wu [9]. Some approximate versions as 

NCC are appeared in different articles where each method 

differs from the others in the DTD input signals 

[10,11,27]. Among these, we find one that depends on the 

cross-correlation between the microphone signal d(n)and 

the error signal e(n) which we will use in this paper with 

the mentioned Geigel algorithm to compare them with the 

proposed method. Note that the performance of the 

proposed method in [11] is exactly similar to the best-

known cross-correlation based DTD [10].  

A statistical decision ξNCC of the NCC method is given by 

[11]: 

2

ˆ ( )
( ) 1

ˆ ( )

ed
NCC

d

r n
n

n



                                                     (7) 

Where red is the cross-correlation between e(n) and d(n), 

and  σd
2
 the variance of d(n). 

ξNCC(n), it is based on estimates ˆ ( )edr n and 
2ˆ ( )d n which 

are found by using exponential weighting recursive 

estimation form [28, 29]: 

 

2 2

ˆ ˆ( ) ( 1) (1 ) ( ) ( )

ˆ ˆ( ) ( 1) (1 ) ( ) ( )

ed ed

d d

r n r n e n d n

n n d n d n

 

  

   

   
 

 

Where λ  is the exponential weighting factor (0.9 <λ<1). 

It should be noted that this method based on recursive 

estimation has a remarkable performance. However, it is 

significantly simpler and computationally very efficient. In 

addition, its main advantage is that only the maximum 

value of cross-correlation needs to be computed instead of 

computing the entire cross-correlation vector required by 

the other algorithms [11]. 

In this work, we propose to compare particularly the NCC 

method with the proposed one which is based on a moving 

temporal window used to track energy variations of three 

vector signals: error vector signal e(n), microphone vector 

signal d(n) and estimated vector signal ˆ ( )ny .  

4- Proposed Method  

A fundamental feature of the proposed method compared 

to other ones is based on a window that moves with time 

to track energy variations of each input signal of the DTD. 

Three input signals to control the DTD are used where the 

sum of energies of the estimated echo and the microphone 

signals is continuously compared to the error signal 

energy.  

 

We get the three input vector signals of the proposed DTD 

at time n as: 

 

e(n) = [e(n)   e(n-1)   …   e(n-N+1)]
T                                             

(10) 

 

d(n) = [d(n)   d(n-1)   …   d(n-N+1)]
T                                           

(11) 

 

1 1ˆ ˆ ˆ ˆ( ) = [ ( )   ( - )   ...   ( - + )]TNn y n y n y ny
                       

(12) 

 

Where N it is a constant length of the temporal window 

chosen to compute initial energy. It determines the number 

of past samples for each input vector signal of the DTD. 

From equation 4, we define the energy of the error vector 

signal as:  

 
22

ˆ( ) ( ) -  ( )n n ne d y

22 2
ˆ ˆ( ) ( ) ( ) 2 ( ) ( )Tn n n n n  e d y d y

 
 
With: ║.║, the Euclidian norm of a vector.  

Equation 15 can be defined as the decision variable EE

(n) of the DTD.   

(8) 

(9) 

(13) (14) (13) 

(14) 
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2

22

( )
( )

ˆ( ) ( )
EE

n
n

n n
 



e

d y
                                         

(15) 

With: 

0 > EE (n) > 1   if   { d
T
(n) ˆ ( )ny  } > 0 

      EE (n) > 1   if   { d
T
(n) ˆ ( )ny  } < 0 

 

 If d(n) and ˆ ( )ny are independents, EE (n) =1, it is the 

case of orthogonality when DT is present. 

 If d(n) = ˆ ( )ny , EE (n) = 0, it is the theoretical case of 

similarity when DT is not present. 

Variations values of EE (n) ≥ 0 reflect or not the presence 

of DT-situations. In Fig. 2, we show the variation range of 

the threshold levels (zones Z0 and Z1) where it will be 

judicious that a constant threshold level (TEE), will be set 

initially in zone Z0 to control the adaptive filter ĥ.  

The binary decision is then calculated as follows: 

 if   ξEE     >  TEE,   DT detected, the binary decision = 1, 

then no adaptation of the filter ĥ; 

 if  ξEE  ≤ TEE, DT not detected, the binary decision = 0, 

then adaptation of the filter ĥ. 

In practical cases or under hostile environments, the 

choice of a fixed threshold level with other methods will 

no longer be valid and must imperatively be replaced by 

an adaptive threshold [30]. However, the proposed method 

presents a nice property based on its ability to initially set 

one and only one fixed threshold level with TEE ≈ 0.When 

the far-end signal is present, the relation between the 

vector signals d(n) and ˆ ( )ny swings between two states : 

slightly correlated (when v(n) ≠ 0) and strongly correlated 

(when v(n) = 0). It is considered that if the value of the 

threshold level TEE is fixed in the zone Z0, the better the 

correlation between the two vector signals ( d(n) and 

ˆ ( )ny ) and the adaptation of the filter ĥ will be initiated. 

Initial energies of the different input vector signals of the 

DTD are computed with a constant length N of the 

temporal window. The energy evolution of each vector 

signal is based on the preliminary calculation of an initial 

quantity of energy with a small number N of samples.  

We have:  
1

2 2
( ) ( )

N j

i j

j e i

 



 e                                                      (16)

1
2 2( ) ( )

N j

i j

j d i

 



 d                                                  (17)  

1
2 2ˆ ˆ( ) ( )

N j

i j

j y i

 



 y                                                  (18) 

Initially, the decision variable is calculated as: 

2

22

0
0

0 0

( )
( )

ˆ( ) ( )
EE 



e

d y
                                           

(19) 

 

When error signal e(n) evolves with time, we get the 

following: 

 

at time n=1 

1
2 2 2 2 2

1 0

1 0( ) ( ) ( ) ( ) ( )

N N

i i

Ne i e i e e



 

    e               

       

2 2 2
0 0( ) ( ) ( )Ne e  e                                   (20) 

at time n=2  

2
1

2 2 2 2

2 1

2 1 1( ) ( ) ( ) ( ) ( )

N N

i i

Ne i e i e e



 

   e

           

 

       

2 2 2
1 1 1( ) ( ) ( )Ne e   e                  (21)

   

      

 

at time n=k 

 

2 2 2
1 2

2 2

1

1 1( ) ( ) ( ) ( ) ( )

N k N k

i k i k

k k N ke i e i e e

   

  

     e

    

 

      

2 2 2
1 1 1( ) ( ) ( )k k N ke e     e               (22) 

 

Idem, we get with d(k) and ˆ ( )ky :     

 
2 2 2 2

1 1 1( ) ( ) ( ) ( )k k k N kd d     d d           (23) 

2 2 2 2
1 1 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )k k k N ky y     y y

         
(24)  

 

Decision variable that evolves continuously with time is 

given at k (k > 0) by: 

 
2 2 2

2 22 2 2 2

1 1 1

1 1 1 1 1 1

( ) ( ) ( )
( )

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
EE

k k N k
k

k k N k k k N k

e e

d d y y


   

       

 


    

e

d y
 

5- Computational Complexity 

As previously reported, energy evaluation of each input 

vector signal of the DTD is computed by using a temporal 

window initialized at the beginning with a constant length 

N. The calculation moves with time sample by sample and 

the decision variable is then evaluated on each time. In 

Fig. 3, we show an example of a moving temporal window 

which tracks energy variations of a signal. 

(25) 
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Fig. 2 Variation range of the threshold levels 

 
Fig. 3 Moving temporal window 

It should be noted that the initial calculation of the energy 

performed on N samples for each input vector signal is 

done only at the beginning of the process. Thus, and as the 

evolution of these signals with time, the squared 

calculation will be done only on the new sample which 

replacing the oldest. Accordingly, by moving the window 

sample by sample, the total energy of each input signal 

will evolve continuously.  

After N iterations, a first move of the window is thus 

achieved and the process works like a FIFO memory. The 

Fig. 4 shows an example of the first move of the initial 

window. At each time and for each input vector signal, we 

have one and only one squared sample computed. We 

require per iteration: 1 addition, 1 division and for each 

signal vector, 1 multiplication, 1 addition and 1 subtraction 

to compute the decision variable (i.e. 11 operations). A 

comparison between the previous and proposed method 

for the total number of computations per iteration is given 

in Table 1.  

 
Table 1: Computational complexity per iteration 

Method    Add      Sub    Mul Div  Comp 

Geigel     0 0   0 1 LG -1 

NCC     2 1   6 1 0 

Proposed     4 3   3 1 0 

 

The comparison indicates that Geigel method has a higher 

computational complexity. The algorithm depends directly 

on the tap-length LG of the window used to calculate the 

maximum of x(n) samples. On the contrary, the proposed 

and NCC methods are independent regardless of this 

parameter. Furthermore, the proposed method remains 

faster than NCC with only three operations of 

multiplication per iteration. It appears that the proposed 

method can be considered more efficient for optimizing 

computation time. 

 

                                                                  

Fig. 4 First Move of the initial window based on FIFO technique 
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6- Simulation results 

In this section, we evaluate the performances of the 

proposed method compared with Geigel and NCC using 

three different scenarios of speech signals (Sc1, Sc2, and 

Sc3) which are sampled at 8 kHz and issued from the 

NOIZEUS database. The echo model is based on the real 

impulse response with the length of echo-path L = 128   

[31,32]. The three scenarios are presented in Fig. 5.  

Three criteria for evaluating the performance of the 

proposed method are used: Misalignment, Echo Return 

Loss Enhancement (ERLE) and the probability of miss 

detection (Pm) [33,34]. 

The criteria are given as follows: 

2
ˆ ( )

( ) 10 log
10 2

n
Misalignment dB

 
 

  
 
 

h h

h

                (26) 

 
 

2
( )

( ) 10 log
10 2

( )

E d n

ERLE dB

E e n



 
 
  
 

                          (27) 

( ) ( ) ( )
11

( ) ( )
1

M
x n v n n

nPm M
x n v n

n


 




                                            (28) 

where: 

Pm is defined as the probability of detection failure when 

DT is present. 

( )x n is the voice activity detection of far-end signal x(n). 

( )v n is the voice activity detection of near-end signal v(n). 

( )n is the binary decision of the DTD. 

In the first step tests, a comparison of the different 

methods is performed with the background noise 

w(n)=0.Parameters used to update the adaptive filter ĥ are 

summarized in Table 2. Geigel, NCC and the proposed 

method have been performed respectively with the best 

parameter values selected for the scenario Sc1 and 

indicated in Table 3.   

 
Table 2: Parameter values of AEC adaptive filtering 

Parameter Value 

 0.3 

C 5.10-6 

L 128 

 
Table 3: Parameter values selected for the different methods 

Method Parameter Value 

Geigel TG 0.8 

LG 128 

NCC TNCC 0.982 

 0.95 

Proposed TEE 0.001 

N 40 

 

Fig. 5 Speech signals of the three Scenarios, a) Scenario Sc1, b) Scenario Sc2, c) Scenario Sc3. 
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Table 4: Parameter values of ERLE of the different methods with the three Scenarios. 

Scenario Geigel NCC Proposed  

 
Peak Average Min Peak Average Min Peak Average Min 

Sc1 46,49 17,14 -0,77 51,38 17,77 -0,33 52,19 19,96 -0,65 

Sc2 60,50 19,69 -1,34 62,80 14,60 -0,47 67,96 23,97 -0,51 

Sc3 47,98 11,26 -0,32 45,80 10,63 -0,96 45,85 11,47 -0,98 

 

The ERLE criterion is considered to be one of the most 

used criteria in performance measurements of AEC 

algorithms. Recommendation G.131 of the International 

Telecommunications Union (ITU) requires an 

attenuation of more than 40 dB in the absence of double-

talk [35]. The obtained results with the above scenarios 

presented in Table 4 and Fig. 6, confirm the superiority 

of the proposed method with peak values of an echo 

attenuation more than (52 dB for Sc1, 67 dB for Sc2, and 

45 dB for Sc3).   
 

Fig. 6 Evolution of ERLE average of the different methods with the 

three scenarios

 

In Fig. 7, we compare the performance of the different 

methods in terms of misalignment. We remark that in the 

single-talk and before the apparition of the DT-period, the 

filter ĥ converges. Indeed, the proposed method maintained 

the constancy of the filter coefficients as soon as a DT-

period occurred, whereas the NCC does false detection with 

a relative divergence. The Geigel method has detected too 

late the occurrence of DT-period with more divergence of 

the filter ĥ. Therefore, the proposed method shows its 

superiority in terms of small steady-state misalignment and 

stability of decision variable.  

In order to validate the proposed method concerning the 

choice of the parameter value of TEE indicated in Table 3, we 

propose to illustrate in Fig. 8 the evolution of the decision 

variable EE (n) obtained with the above scenarios. 

 

b) 

 
a) 

 

c) 

 

Fig. 7 Misalignment evaluation of the different methods with the three scenarios: a) Sc1, b) Sc2, c) Sc3.
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a) 

b) 

c) 

 

Fig. 8 Evolution of the decision variable of the proposed method with the 

three scenarios: a) Sc1, b) Sc2, c) Sc3. 

It appears that with the scenarios (Sc1, Sc2 and Sc3) the 

decision variable EE (n) displays a very close value to 

zero during single-talk periods and confirms the choice of 

a constant threshold level fixed in the zone Z0.  

To assess the impact of the fixed threshold level on the 

performance of the above methods, we show in Fig.9 the 

misalignments obtained with different threshold levels for 

the two scenarios (Sc2 and Sc3). It can be seen that the 

proposed method shows for an appropriate threshold level 

(TEE = 0.001) initially set in zone Z0 with scenario Sc1, 

leads to a result without degradation of the misalignment 

performance in scenarios Sc2 and Sc3. On the other hand, 

with Geigel and NCC methods, it can be seen that the 

threshold levels chosen with scenario Sc1 have been 

replaced by other more adequate threshold levels thus 

maintaining the performance of the corresponding 

misalignments. Therefore, we consider that for the 

proposed method, the TEE threshold level initially set for a 

given scenario will also be valid with any other scenarios. 

Rather, Geigel and NCC methods will require an adaptive 

threshold level to maintain misalignment performance. 

      a) 

 
      b) 

 

Fig. 9 Misalignment evaluation of the different methods 

with variable threshold, a) Sc2, b) Sc3. 
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In Fig. 10, we propose to evaluate with scenario Sc1 the 

impact of the length N on the misalignment of the 

proposed method. The results show misalignments with 

different values of N which demonstrate that a better 

performance is obtained with an appropriate set of N 

(N<100). We confirm that the preliminary calculation of 

energies requires a small number of samples and a reduced 

length N of the moving temporal window justifies a good 

tracking capability. 

 

Fig. 10 Misalignment evaluation of the proposed method with different 

values of the length N 

In order to evaluate ERLE and misalignment in a noisy 

environment (w(n) ≠ 0),an independent white Gaussian 

noise is added to the echo signal of the scenario Sc1 with 

different signal-to-noise ratio (SNR) in the period between 

6400 and 60000samples. Note that a constant noise with 

SNR = 50 dB is added only to the first 6400 input samples.  

 

 

 

 

The SNR is defined as: 
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Near-end and Far-end signals are used with different levels 

of near-end-to-far-end ratio (NFR), which is calculated as:  

     

2
( )
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We show in Table 5 parameter values of ERLE in a noisy 

environment obtained from the different methods with 

scenario Sc1. The results demonstrate a better and an 

appropriate ERLE values performed by the proposed 

method compared to Geigel and NCC. 

Fig.11, illustrates clearly the superiority of ERLE average 

values obtained by the proposed method in a noisy 

environment. 

 

Fig. 11 Evolution of ERLE average for the different methods in a noisy 

environment 

Table 5: Parameter values of ERLE of the different methods in a noisy environment. 

SNR 

(dB) 

 Geigel NCC Proposed 

 Peak Average Min Peak Average Min Peak Average Min 

5  38,46 3,26 -1,36 38,46 -8,75 -30,54 38,46 4,20 -0,90 

10  38,46 4,34 -1,19 38,46 -7,67 -32,05 38,46 5,38 -0,72 

15  38,46 5,50 -1,41 38,46 -6,79 -31,90 38,46 6,74 -0,55 

20  38,46 6,76 -1,10 38,46 -1,79 -23,13 38,46 8,22 -0,50 

25  38,46 8,00 -1,18 38,46 1,95 -9,94 38,46 9,79 -0,57 

30  38,46 9,71 -1,16 38,46 4,89 -7,92 40,80 11,67 -0,59 

 

Misalignment evaluation in a noisy environment with 

scenario Sc1 is illustrated in Fig. 12. The results show 

that the proposed method presents good performances in 

terms of misalignment and minimizing false detection in 

the DT-situation. Robustness against additive noise of 

the proposed method is clearly appeared compared to 

other ones. 
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a) 

 

b) 

 
 

c) 

 

 

d) 

 

Fig. 12 Misalignment evaluation of the different methods in a noisy environment, a) SNR=5 dB, b) SNR=15 dB, c) SNR= 25 dB, d) SNR= 30 dB

To simulate the change in the echo-path, we increase the 

gain of the acoustic channel by 10 at sample 31000. The 

obtained results with scenario Sc1 are shown in Fig. 13. 

They demonstrate a good tracking capability by the 

proposed method which can distinguish between the 

near-end signal and an abrupt change of the acoustic 

channel.   

Objective performance evaluation based on the 

probability of missed detection Pm is presented in Fig. 

14. It is calculated with SNR = 20 dB as a function of 

NFR values varying between -10 dB and 20 dB. The 

used threshold for each method is chosen to give a 

probability of false detection Pf = 0.2 which is defined as 

the probability of declaring detection when DT does not 

exist. It is calculated without the near-end signal as: 

1
( ) ( )

1

M
P x n n

f M n
 


 

The obtained result demonstrates that the proposed 

method is better than Geigel and NCC in terms of the 

probability of missed detection when NFR varies more 

than -10 dB. 
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Fig. 13 Misalignment evaluation with a change in the echo-path 

 

                 Fig. 14 Probability of missed detection 

7- Conclusion 

In this paper, we have presented a new and efficient 

method used for AEC systems where the main purpose is 

to halt quickly and accurately the update filter 

coefficients during the DT-periods. The method is based 

on a moving temporal window that tracks variations of 

the error energy compared to the sum of energies of the 

estimated echo and the microphone signals. We consider 

that the decision variable based on a window that moves 

with time to track variations of the error energy improves 

the distinguishing capability between far-end and near-

end speech signals. Computer simulation has 

demonstrated the superiority of the proposed method in 

terms of small steady-state misalignment, high ERLE, 

and robustness against the additive white noise and 

abrupt change in the echo-path. It has also presented 

improvement in terms of minimizing the number of miss 

detection and false alarm with no variable threshold 

level. As an algorithm performed with FIFO technique, 

the proposed method can be considered also efficient for 

optimizing computation time. It is significantly simpler 

and has the capability to outperform conventional NCC 

methods. Further work remains necessary to compare it 

with other recent methods. 

References 
 

[1] J. Benesty, T. Gänsler, D. R. Morgan, M. M. Sondhi, S. 

L. Gay, “Advances in network and acoustic echo 

cancellation. Digital Signal Processing,” Springer, Berlin, 

Heidelberg, 2001. 

[2] M. M. Sondhi, “An adaptive echo canceler,” The Bell 

Syst, Technical journal, Vol. 46, No. 3, 1967,  pp. 497–

511.  

[3] J. M. Gil-Cacho, “Adaptive filtering algorithms for 

Acoustic Echo Cancellation and Acoustic feedback 

control in speech communication applications,” PhD. 

Thesis, University of Belgium Ku Leuven, 2013. 

[4] S. Haykin, “Adaptive filter Theory,” Prentice-Hall, Inc, 

Upper Saddle River, NJ, USA, 1996. 

[5] J. Benesty, T. Gänsler, “Audio signal processing for next 

generation multimedia communication systems,” Kluwer 

Academic Publishers, 2004. 

[6] F. Huang, J. Zhang, S. Zhang, “Combined-step size affine 

projection sign algorithm for robust adaptive filtering in 

impulsive interference environments,” IEEE Transactions 

on Circuits and Systems II: Express Briefs, Vol. 63, No. 

5, 2015, pp. 493-497. 

[7] Y. R. Chien, J. Li-You, “Convex combined adaptive 

filtering algorithm for acoustic echo cancellation in 

hostile environments,” IEEE Access, Vol. 6, 2018, pp. 

16138-16148. 

[8] D. Duttweiler, “A twelve-channel digital echo canceler,” 

IEEE Transactions on Communications, Vol. 26, No. 5, 

1978, pp.  647-653. 

[9] H. Ye, B. X. Wu, “A new double-talk detection algorithm 

based on the orthogonality theorem,” IEEE Transactions 

on Communications, Vol. 39, No. 39, 1991, pp. 1542-

1545. 

[10] J. Benesty, D. R. Morgan, J. H. Cho, “A new class of 

double-talk detectors based on cross-correlation,” IEEE 

Transactions on Speech and Audio Processing, Vol. 8, 

No. 2, 2000, pp. 168-172. 

[11] M. A. Iqbal, J. W. Stokes, S. L. Grant, “Normalized 

double-talk detection based on microphone and AEC 

error cross- correlation,” IEEE International Conference 

on Multimedia and Expo, 2007, pp. 360-363. 

[12] P. S. R. Diniz, “Adaptive Filtering Algorithms and 

Practical Implementation,” Springer, 2013. 

[13] M. Hajiabadi, “Acoustic Noise Cancellation Using an 

Adaptive Algorithm Based on Correntropy Criterion and 

Zero Norm Regularization,” JIST Journal of Information 

0 1 2 3 4 5 6

x 10
4

-30

-25

-20

-15

-10

-5

0

5

Samples

M
is

a
li
g

n
m

e
n

t 
(d

B
)

 

 

3 3.5 4

x 10
4

-12

-10

-8
Geigel

NCC

Proposed

change in the echo-path

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-10 -5 0 5 10 15 20

P
m

 

NFR (dB) 

Proposed NCC Geigel



    

   Makdir, Bouamar & Benziane, An Acoustic Echo Canceller using Moving Window to Track Energy Variations of ……. 

 

 

116   

Systems and Telecommunication, Vol. 3, No. 3, 2015, pp. 

150-156. 

[14] Hun, Choi.Hyeon-Deok, Bae, “Subband Affine Projection 

Algorithm for Acoustic Echo Cancellation System,” 

EURASIP Journal on Advances in Signal Processing, 

2007, pp. 1-12. 

[15] B. H. Yang, “An adaptive filtering algorithm for non-

Gaussian signals in alpha-stable distribution,” Traitement 

du Signal, Vol. 37, No. 1, 2020, pp.69-75.   

[16] S. Hannah, D. Samiappan , R. Kumar , A. Anand, A. Kar,  

“Variable tap-length non-parametric variable step-size 

NLMS adaptive filtering algorithm for acoustic echo 

cancellation,” Applied Acoustics, Vol. 159, 2020. 

[17] M. Hamidia, A. Amrouche, “A new robust double-talk 

detector based on the Stockwell transform for acoustic 

echo cancellation,” Digital Signal Processing, Vol. 60, 

2017, pp. 99-112. 

[18] V. Thien-An, H. Ding, M. Bouchard, “A survey of 

double-talk detection schemes for echo cancellation 

applications,” Canadian Acoustics, Vol. 32, No. 3, 2004, 

pp. 144-145. 

[19] M. Benziane, M. Bouamar, M. Makdir, “Doubletalk 

detection based on enhanced Geigel algorithm for 

acoustic echo cancellation,” In 2018 6th International 

Conference on Control Engineering & Information 

Technology (CEIT), 2018, pp. 1-5. 

[20] T. Gänsler, J. Benesty, “A frequency-domain double-talk 

detector based on a normalized cross-correlation vector,” 

Signal Processing, Vol. 81, No 8, 2001, pp. 1783–1787. 

[21] J. Benesty, T. Gänsler, “A multichannel acoustic echo 

canceler double-talk detector based on a normalized 

cross-correlation matrix*,” European Transactions on 

Telecommunications, Vol. 13, No 2, 2002, pp. 95–101. 

[22] T. Gänsler, J. Benesty, “The fast normalized cross-

correlation double-talk detector,” Signal Process, Vol. 86, 

No. 6, 2006, pp. 1124–1139. 

[23] T. Gansler, M. Hansson, C.J.Ivarsson, G. Salomonsson, 

“A double-talk detector based on coherence,”IEEE 

Transactions on Communications, Vol. 44, No. 11, 1996, 

pp. 1421-1427. 

[24] H. Bao, Y. Yang, J. Liu, X. Ba, Q. Yuan, “A robust 

algorithm of double talk detection based on voice activity 

detection,” Proc. Inter. conf. on Audio Language and 

Image Processing, 2010, pp. 12–15.  

[25] S. Cecchi, L. Romoli, F. Piazza,  “Multichannel Double-

Talk Detector based on Fundamental Frequency 

Estimation,” IEEE Signal Processing Letters, Vol. 23, 

No. 1, 2016, pp. 94-97. 

[26] Y. Zhenhai, F. Yang, J. Yang, “Optimum step-size 

control for a variable step-size stereo acoustic echo 

canceller in the frequency domain,” Speech 

Communication, Vol. 124, 2020, pp. 21–27. 
[27] S. J. Park, C. G. Cho, C. Lee, D. H. Youn, S. H. Park, 

“Integrated echo and noise canceller for hands free 

applications,” IEEE Transactions on circuits and systems, 

Part II, Analog and Digital Signal Processing, Vol. 49, 

No. 3, 2002, pp. 188-195.  

[28] Y. Hua, “Adaptive filter theory and applications,” PhD. 

Thesis, South-East university, China, 1989 

[29] Honig, M.L., Messerschmitt, D.G., “Adaptive Filters,” 

Kluwer, 1984. 

[30] M. Benziane, M. Bouamar, M. Makdir, “Simple and 

Efficient Double-Talk-Detector for Acoustic Echo 

Cancellation,” Traitement du signal, Vol. 37, No. 4, 2020, 

pp. 585-592. 

[31] ITU-T. “Digital Network Echo Cancellers,” 

Recommendation G.168, International 

Telecommunication Union; Geneva, 2007. 

[32] Y. Hu, P. C. Loizou, “Subjective comparison and 

evaluation of speech enhancement algorithms,” Speech 

Communication , Vol. 49, No. 7, 2007, pp. 588-601. 

[33] H. Wonchul, K. Taehwan, B. Keunsung, “Robust double-

talk detection in the acoustic echo canceller using 

normalized error signal power,” Proc. ISSPA’07.UAE, 

2007, pp. 1-4  

[34] J.H. Cho, D.R. Morgan, J. Benesty., “An objective 

technique for evaluating doubletalk detectors in acoustic 

echo cancelers,” IEEE Transactions on Speech and Audio 

Processing, Vol. 7, No. 6, 1999, pp. 718–724. 

[35] ITU-T. “Digital Network Echo Cancellers,” 

Recommendation G.131, International 

Telecommunication Union; Geneva, 2003. 

 

https://onlinelibrary.wiley.com/journal/15418251
https://onlinelibrary.wiley.com/journal/15418251

