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Abstract 
A conventional camera with small size pixels may capture images with defocused blurred regions. Blurring, as a low-

pass filter, attenuates or drops details of the captured image. This fact makes deblurring as an ill-posed problem. Coded 

aperture photography can decrease destructive effects of blurring in defocused images. Hence, in this case, aperture 

patterns are designed or evaluated based on the manner of reduction of these effects. In this paper, a new function is 

presented that is applied for evaluating the aperture patterns which are designed for defocus deblurring. The proposed 

function consists of a weighted sum of two new criteria, which are defined based on spectral characteristics of an aperture 

pattern. On the basis of these criteria, a pattern whose spectral properties are more similar to a flat all-pass filter is 

assessed as a better pattern. The weights of these criteria are determined by a learning approach. An aggregate image 

quality assessment measure, including an existing perceptual metric and an objective metric, is used for determining the 

weights. According to the proposed evaluation function, a genetic algorithm that converges to a near-optimal binary 

aperture pattern is developed. In consequence, an asymmetric and a semi-symmetric pattern are proposed. The resulting 

patterns are compared with the circular aperture and some other patterns in different scenarios. 
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1. Introduction 

In imaging with a lens-based camera, focal plane is 

defined. Therefore, if an image is captured of a scene with 

varying depth, then out of focus regions are blurred. The 

amount of blurring depends on the size of aperture. If the 

size of aperture is extended, then depth of field is 

decreased and defocus blur is increased. Hence, smaller 

apertures are desired to decrease the scale of blur. On the 

other hand, by growing the resolution of camera systems, 

size of pixels has been reduced. Accordingly, wider 

apertures are needed to obtain light required for these 

small pixels and maintain signal-to-noise ratio in the 

captured image. As a result, there is a challenge between 

the size of circular aperture and the scale of blur in 

conventional cameras [1]. Coded aperture photography is 

a field of computational imaging that can be used for 

gathering light of a wider aperture with less destructive 

effects of defocusing. A coded aperture camera is a 

conventional camera with a mask on the aperture. This 

type of camera has been used in several applications such 

as defocus deblurring [2-4]; depth estimation [5-10]; 

estimating depth and image [11-13]; super-resolution [14] 

and so on. A comprehensive review about computational 

cameras is found in [15,16]. The main idea in coded 

aperture for deblurring is to use a mask on aperture in 

order to change the pattern of rays passed through it. In 

this way, the shape of defocus kernel is changed, 

whereupon damaging effects of defocus blur is reduced. 

As a result, deblurring operation on the images captured 

by this type of camera is more successful compared to the 

images taken with a conventional camera. The first idea 

of using coded aperture imaging was introduced in the 

field of astronomy. Various patterns have been designed 

for lens-less imaging of gamma-ray or X-ray sources. 

Such patterns are designed with the aim of collecting 

more lights in order to improve signal-to-noise ratio. A 

comprehensive study about these techniques is found in 

[17]. One of the well-known patterns introduced in recent 

decades is modified uniform redundant array (MURA) 

[18]. However, these patterns, which are designed for 

lens-less imaging, are not suitable to use with lenses for 

defocus deblurring [2,3]. In lens-based imaging, the first 

applications of unconventional apertures were introduced 

in the optic field in order to increase depth of field or 

compensate attenuated waves [19,20]. The approaches 

used in these applications are principally based on the 

optical properties of imaging systems. In recent years, 

other approaches have been proposed for defocus 

deblurring in lens-based imaging. Hiura et al. [6] design a 

multi-focus coded aperture camera that simultaneously 

captures three images with different focus values. Four-

pinhole and two-pinhole apertures are used for depth 

estimation and deblurring, respectively. Veeraraghavan et 

al. [3] search for a mask pattern such that the minimum 

magnitude of its Fourier spectrum is maximized. MURA 
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pattern is used as initial pattern and then a gradient 

descent search is used for finding the optimum pattern. 

The non-binary obtained pattern is pruned to get a sub-

optimal 7×7 binary pattern with a random search 

algorithm. This search is very time-consuming [3]. Zhou 

et al. [2] define an objective function aimed to minimize 

residual error of deblurred images defocused by a 13×13 

binary coded aperture. A genetic algorithm is used to find 

a near optimal pattern. According to their objective 

function, patterns provided for each amount of noise are 

different. They also introduce in [11] a coded aperture 

pair to capture two images for both depth map and all-

focus image estimation. Masia et al. [4] extend the idea 

proposed in [2]. A simple aggregate measure consists of 

normalized root mean square error (RMSE) and two 

perceptual metrics, including structure similarity index 

(SSIM) and High Dynamic Range-Visual Difference 

Predictor (HDR-VDP2), is defined. To evaluate an 

aperture pattern, a special image with nearly wide 

bandwidth of power spectra, is blurred by the pattern and 

then deblurred. Quality of the deblurred image is 

evaluated by the proposed aggregate measure. This value 

determines the fitness of the corresponding pattern. More 

fitness value means more appropriate pattern. A genetic 

algorithm is developed to find a near optimal pattern in 

size 11×11. Designing masks while taking into account 

perceptual image quality assessment criteria is a valuable 

idea. However, spectral response of the selected image is 

not completely matched to the statistical model of natural 

images. Hence, decision based on the deblurring result of 

only one image might not lead to the best design.  

Figure 1 shows a circular conventional aperture and 

some patterns introduced so far for different purposes. 
 

 
(d) 
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Fig. 1. Conventional aperture and some pattern designed for coded 

aperture. (a) Conventional aperture; aperture mask proposed by: Zhou et 

al.[2] for (b) σnoise ~N(0,0.001) and (c) σnoise ~N(0,0.005), (d) Levin et 

al.[5], (e) Veeraraghavan et al.[3] (f) Hiura et al. [6], (g) MURA mask 

[18] and (h) Masia et al. [4]. 

In defocus deblurring, the main aim of aperture 

designing is to compensate the low response of the blurring 

kernel to high frequencies. Indeed, if spectral response of a 

pattern has the maximum similarity to a flat all-pass filter, 

the pattern is assumed as the best. Hence, our main idea in 

evaluating a pattern is measuring the amount of this 

similarity. Based on this idea, a weighted evaluating 

function consists of two terms is defined. The weight of 

each term is determined based on the quality assessment 

results of deblurred images taken with some existing 

aperture patterns. A genetic algorithm is applied for finding 

a pattern that satisfies the proposed evaluating function.  

The rest of this paper is organized as follows: in 

Section 2, first a review of blurring problem formulation 

is presented. Then an aggregate measure is defined for 

evaluating the quality of deblurred images. Section 3 

describes our method to find near optimal aperture pattern. 

Analysis and performance comparison is discussed in 

Section 4. Finally, conclusions are drawn in Section 5. 

2. Background 

2.1 Blurring Problem Formulation 

Defocussing acts as a low-pass filter in which high 

frequencies or details of a captured photo are attenuated 

or dropped. For a simple fronto-parallel object at depth d, 

defocusing is defined as convolution of a defocus kernel 

or point-spread-function (PSF), called kd with a sharp 

image      which causes a spatial invariant blur: 
 

                           ∑  
 

 

                                     

 

where η corresponds to additive noise and   
   refers to 

the elements of kd. The superscript d indicates the kernel k 

is a function of depth of scene. It is usually assumed the 

additive noise (η) is a Gaussian noise N(0,σ2) [21]. 

Equivalently, spatially invariant blur in frequency 

domain is defined as Eq.2: 
 

               |  | |  | 
   

       
                 

 

This multiplication means the spectrum of in-focus 

image      is filtered by the spectrum of the filter Kd, 

which is also called Modulation Transfer Function (MTF), 

and then the noise ζ is added. Defocus kernel resulted 

from a conventional circular aperture has a Bessel-like 

spectrum. Therefore, some spectra of the sharp image are 

damped or lost especially in higher frequencies. 

Accordingly, deblurring aimed to design an inverted filter, 

is assumed as an ill-posed problem [21]. If the entire 

scene is in-focus, then no frequency will be dropped and 

K1 can be assumed as a flat all-pass filter, namely 1. Our 

main idea is to design a pattern whose spectral properties 

have the most possible similarity to a flat all-pass filter. 

2.2 Quality Assessment of Deblurred Images 

Image restoration has a long history in the field of 

image processing. Up to now, several methods have been 

proposed to estimate a sharp image (  ̂) from a noisy-

blurred image      , while many problems in this field 

have not been solved yet [22]. 

Quality of restored results is measured by image 

quality assessment methods. There are various methods 

including objective and perceptual approaches that 

                                                           
1 In the rest of text, we use notation K instead of Kd which can be 

generalized to each depth d. In addition, for simplicity and without loss 

of generality, we suppose that K has a vectorized form. Therefore, we 

use 1-dimensional notations. 
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compute similarity or dissimilarity of a reference image to 

a test image. In our study, the deblurred image and the in-

focus image are assumed as test and reference images, 

respectively. Usually objective quality measures or 

metrics, which work at pixel level (such as RMSE), are 

used for quality evaluation. However, human perception 

of image quality is not necessarily correlated with these 

measures [4,23]. 

Masia et al. [4] showed that using both types of these 

measures lead to more precise qualification of the 

restored images. As mentioned before, they used RMSE, 

SSIM and HDR-VDP2; but they didn’t give any specific 

reason for choosing these measures. In this research, we 

use an aggregate measure of objective and perceptual 

metrics. This measure is used for two purposes. First, it is 

used in the process of designing a new aperture pattern. 

Then, deblurred results of images captured with different 

patterns are evaluated with this aggregate measure. In the 

rest of this section, selected measures and the reason of 

choosing them are briefly described. 

The proposed aggregate measure includes RMSE and 

visual information fidelity (VIF). RMSE is a well-known 

objective quality assessment measure that is defined to 

compute the difference between two images (  ̂   ) with 

size R×C as Eq.3: 
 

    ( ̂    )   √
 

   
∑∑          ̂       

 

 

   

 

   

         

 

VIF[23] is a full reference perceptual quality 

assessment measure for computing visual fidelity of the test 

image to the reference image. The reference image is 

modeled as the output of a stochastic “natural” source that 

traverses the human visual system (HVS) channel and then 

is processed by the brain. The information that the brain 

can extract from the output of the HVS channel is 

quantified. The same measure is computed for the test 

image, which may be disfigured by an image distortion type. 

Image distortion is modeled in wavelet domain and includes 

various distortion types such as blur, additive noise and 

global or local contrast changes. VIF computes the fidelity 

or similarity of the information extracted from the test 

image to the information extracted from the reference image. 

Because of the complexity of equations in computing VIF, 

we avoid to describe the method of computing in details and 

refer readers to the original publication [23]. 

According to [24,25], VIF is the most precise quality 

assessment measure if images are distorted by artifact or 

blur whereas RMSE and consequently peak-signal-to-

noise ratio (PSNR) are good evaluators if images are 

distorted by noise.  

In real world, deblurred images suffer from various 

types of error such as ringing artifacts and inverted noise 

(deconvolution noise) [21,23]. Since the performance of 

all quality assessment measures is reduced in the presence 

of several distortion types in an image [24], using an 

aggregate measure, which its terms are sensitive to 

different types of distortion, improves the accuracy of 

quality assessment [4,26].  

Accordingly, the following aggregate measure is used 

for assessing the quality of deblurred images that is 

sensitive to both artifact and noise: 
 

                                                                         
 

The value of pixel intensities are assumed to be 

between 0 and 1.Therefore, the range of both RMSE and 

VIF is [0-1]. It is clear that a larger value of Q signifies a 

better result. Although equal weights of quality measures 

were used for computing Q, other possibilities may be 

applicable which will be studied in our future works. 

3. Aperture Pattern Design 

The main object of this paper is to find a pattern that 

reduces ill-posedness of blurring problem in defocused 

images. Therefore, we must search for a pattern whose 

corresponding filter is similar to a flat all-pass filter. A 

flat all-pass filter has some explicit properties: its spectral 

response to all frequencies is as high as possible and this 

response has no fluctuation, so it has no serious drop. 

According to the following reason, we don’t focus on 

phase properties of a mask. Based on Wiener restoration 

algorithm, if kernel K is known, phase properties of K 

have no effect on deblurring error. This matter can be 

resulted directly from the criterion introduced in [2], 

which is based on the amount of deblurring error obtained 

by Wiener filter. As a result, our criteria for evaluating a 

filter is defined as follows: 

3.1 Defining Criteria 

3.1.1 Distance of Filter to an All-Pass Filter 

As mentioned in Section 1, using a coded mask on 

lens changes the shape and properties of the defocus 

kernel, thus weakening the high frequencies can be 

decreased. However, because the aperture is partially 

masked, the amount of light passed through the aperture 

is reduced. Therefore, in a fixed exposure time, using a 

mask causes to reduce the brightness of the captured 

image. This reduction can be modeled by decreasing the 

sum of kernel elements in Eq. 1, whereupon the spectral 

response of the corresponding filter is affected. Reduction 

of the brightness can be compensated slightly during the 

deblurring operation. However, if the transmitted light is 

very low, signal to noise ratio of the captured image is 

decreased. On the other hand, increasing the exposure 

time in order to compensate this reduction is not desired. 

This problem is one of challenges in coded aperture 

photography that has been discussed completely in 

[27,28]. Hence, we must search for a pattern whose 

spectral response to all frequencies is as high as possible. 

Therefore, to find a filter whose spectral response is as 

similar as possible to 1, the first criterion is defined as 

Euclidean distance between the spectrum of filter K and 1. 
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     ‖  | |‖                                                                       

3.1.2 Derivation of Spectral Response 

Using ‖ ‖  in computing the criterion C1 causes to 

assign large penalties to some frequency components of K 

that have a low magnitude of spectrum. However, this 

criterion does not guarantee to obtain a flat spectral 

response. Hence, the second criterion is defined as the 

norm of gradient of K.  
 

     ‖ | |‖                                                                             
 

Obviously, less fluctuation in spectral response derives 

from less fluctuation in difference between K and 1. This 

could be easily shown by computing the derivative of C1 

with respect to the frequency component u. 
 

   

  
    

 | |

  
   | |     {

 | |

  
           

| |               
             

 

Both of equations (7.a) and (7.b) emphasize that the 

least fluctuation of spectral response is needed to have a 

uniform similarity. Since K is a low-pass filter, condition 

(7.b) is not obtainable. Therefore, the second criterion is 

used to get closer as possible to the condition (7.a). 

3.2 Evaluation Function 

For a filter K with size M×M, the range of values for 

C1 and C2 are [0..M2]. However, in practice, values of C2 

are much smaller than C1. On the other hand, they may 

have different significance in pattern evaluation. Hence, 

the evaluation function is defined as a weighted sum of 

the proposed criteria: 
 

                                                                             
 

As we discuss later, M is set to 32. A pattern with 

minimum value of F is assumed as the best pattern. To 

find the best values for the weights a1 and a2, a search 

strategy has been used that is described in the Section 3-3. 

3.3 Computing Weights 

For computing weights, coded aperture imaging system 

is simulated with different existing aperture patterns. The 

capture process is simulated by multiplying the Fourier 

transform of the sharp image (F0) to the defocus kernel (Kd) 

obtained of a pattern and then the noise ζ is added. 

Deblurring is performed with an improved version of 

Wiener algorithm proposed in [2]. This algorithm is chosen 

because of its appropriate quality and speed.  

At first, properties of 8 patterns shown in Figure 1 are 

studied in 6 different blur scales varying between 3 and 8 

pixels in radius. As stated in Section 4, this range of blur 

sizes covers an adequate range of blur scales in real scenes. 

To have a more precise evaluation, each blurring kernel is 

zero padded into a 32×32 matrix, and then its Fourier 

transform is computed. The values of the two proposed 

criteria are computed for each 48(8×6) blurring kernel (K). 

Then, the performance of these kernels is evaluated. For 

this purpose, 20 different images consist of indoor and 

outdoor natural images and some resolution charts are 

chosen in a manner that they model the expected spectrum 

of natural images [29]. In this way, we could have a fair 

evaluation about each kernel. (The average size of used 

pictures is about 640×480.) Figure 2 shows some of used 

pictures and the average of their spectral response. 
 

 

 

 

 

 

 

 

 

(a) 
 

(b) 

Fig. 2. (a) Some of images used for evaluating the existing apertures, (b) 

Log scale of average power spectrum of 20 selected images. 

These images are blurred by each kernel (K) and then 

deblurred. The quality of each deblurred image is 

computed with Eq.5 and then the average of quality is 

computed over 20 images. Since Zhou et al.[2] declared 

interdependence of appropriate aperture pattern and the 

amount of noise, this scenario is repeated separately on 6 

different levels of additive noise (σ = 0.0005, 0.001, 

0.005, 0.01, 0.015, 0.02). In this way, 48 different Q value 

are obtained for each amount of noise. For each level of 

noise, a1 and a2 must be found in a manner that statement 

9 holds true for each paired kernel (K, K'): 
 

                                                                                 
 

where F and F' refers to the fitness value of K and K', 

respectively. By extending the statement 9, we have: 
 

                     
      

                      
 

         
           

                                             
 

By dividing two sides of inequality 11 on a1 (suppose 

a1 > 0), a simplified form is obtained: 
 

      
           

                                                   
 

Indeed, without loss of generality and just for 

simplicity, we can fix a1 = 1 and reduce the space of 

solution to find another coefficient. This inequality 

divides 1-D search space into feasible and infeasible 

regions. Inequality 12 must hold true for each paired 

kernel (K, K') that Q > Q'. Hence, there is a linear 

inequality system that its solution gives the final feasible 

region in which statement 9 is true for all paired kernel. 

Table 1, shows individual computed feasible values of b2 

corresponding to each amount of noise. 

Table 1. The range of b2 values according to the variance of additive noise. 

b2 σ 

[15.88..19.75] 0.0005 

[15.88..19.75] 0.001 

[15..17.5] 0.005 

[9.68..15.46] 0.01 

[9.68..10.33] 0.015 

[6.1..9.8] 0.02 
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As shown in Table 1, by increasing the amount of 

noise, the importance of C1 relative to C2 increases 

gradually. It means in higher levels of noise, more light is 

needed to keep signal to noise ratio.  

It must be noticed the large values of b2 does not 

imply that C1 is less significant. As mentioned earlier, in 

practice, values of C1 is greater than C2. Therefore, b2 

nearly compensates this difference as well as determining 

the significance of each criterion in evaluating the fitness 

of a pattern.  

According to Table 1, choosing different amount of b2 

leads to different patterns. However, if designing only one 

pattern is desired, it is preferred to choose a value of b2 

that is near to the most of feasible regions. In this way, 

the designed pattern will be appropriate for a wide range 

of noise. Regarding to Table 1, b2 is set to 15.5. This 

point is inside the feasible region of σ = 0.005 while 

being close to the feasible region of at least three other 

levels of noise (0.0005, 0.001, 0.01). In fact, Table 1 

clarifies why a pattern designed for σ=0.005 has better 

performance in other levels of noise. This is the same 

result that has been experimentally experienced in [4]. 

Accordingly, a pattern with filter K is evaluated by Eq. 13: 
 

                                                                 

3.4 Mask Resolution Determination 

In this study, mask resolution is determined such that 

each single hole provides no diffraction. According to 

superposition property in coded aperture imaging, if a 

single hole of a pattern does not provide any diffraction, 

then the image composed of rays passed through all the 

holes does not provide any diffraction [7]. Based on 

formula proposed in [7], a 7×7 mask is appropriate for an 

imaging system with aperture-diameter = 20mm and pixel-

size = 11.5μm. According to the camera specification used 

in our experiments, this resolution is selected for our 

mask. The related formula has been stated clearly in [7]. 

It must be mentioned higher resolution could be chosen if 

both diffraction and defocus were formulated in blurring 

function. This will be considered in our future study. 

3.5 Optimization 

Our goal is to obtain a pattern that minimizes the 

value of function F as defined in Eq.13. Generally, there 

are two main approaches to find the best pattern. In the 

first approach, Fourier transform of an initial pattern is 

used for finding optimal pattern. Then, a constraint linear 

or non-linear problem must be solved to find the answer. 

Inverse Fourier transform of the answer gives a non-

binary pattern. However, finding the best binary pattern 

from the answer is very time consuming. This problem 

has been already reported in [3]. 

Another approach is using evolutionary algorithms. 

Genetic algorithm is the most popular type of evolutionary 

algorithms. A population of random binary patterns is 

created. The fitness value of each pattern is computed. In 

our case, spectral properties of each pattern determine the 

fitness. Population evolves by using some breeding 

operators such as crossover and mutation. After some 

generations, the population is converged to a final pattern. 

This simple yet effective method has been used in [2,4]. 

Because the search space of patterns is very large, 

implementing heuristic search strategies such as random 

restart hill-climbing is impractical.  

In this study, we implemented a genetic algorithm, 

which is described here in details. A generation of binary 

patterns with population size 1000 is created. A pattern is 

defined by a vector of 49 binary elements. According to 

[30], this size of population ensures that our search is 

converged to a proper solution. The fitness value of each 

pattern is computed based on Eq.13 (i.e. F value). Patterns 

are selected by the stochastic uniform method and then 

are evolved by crossover with pc = 0.8 and mutation with 

pm = 0.05. Selection and reproduction are repeated until 

the average change of fitness value over last 10 

generations is less than 0.00001. In our case, convergence 

occurs after about 50 generations. In this way, we find a 

pattern shown in Figure 3.a. Like other studies, resulting 

pattern is not symmetric. Asymmetric patterns are not 

rotation-invariant. In addition, some photographers would 

like to use symmetric apertures. Therefore, our genetic 

algorithm is repeated to find a symmetric pattern. In this 

search, each chromosome has 16 bits length that contains 

nearly a quarter of a pattern with size 4×4. The complete 

form of a pattern is obtained by reflecting the early 

version(4×4 pattern) along the last column as vertical 

pivot and then along the last row as horizontal pivot. The 

fitness is computed based on Eq.13. Because of 

shortening the length of each chromosome, convergence 

occurs in about 30 generations. As expected, the fitness 

value of the resulted pattern is slightly lower than the 

asymmetric one. Since Levin et al. [5] reported earlier 

that symmetric patterns might contain more zero 

frequencies than asymmetric ones, this result is not 

surprising. Figure 3.b shows the resulted pattern. This 

pattern is symmetric over a 90º rotation, so we call it 

semi-symmetric. 
 

  

(b) (a) 

Fig. 3. Patterns obtained of optimization. (a) Asymmetric pattern, (b) 

Semi-symmetric pattern. 

The transmission rate (compared to the circular 

aperture) of our optimized asymmetric and semi-

symmetric patterns are 0.4025 and 0.3517, respectively. 

The transmission rate is 0.4001, 0.4067 and 0.5856 for 

patterns proposed by Veeraraghavan et al. [3], Zhou et al. 

[2] (σ~N(0,0.001)) and Masia et al. [4], respectively. 

Transmission rate of our asymmetric pattern is close to 

the patterns proposed in [2] and [3], which all of them are 

searched in a search space containing all patterns with 

different transmission ratio. However, in [4], transmission 
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ratio is fixed to 0.5856 and search space contains just 

patterns with the same transmission rate. 

4. Analysis and Performance Comparison of 

Apertures 

In this section, our proposed patterns are evaluated in 

comparison with conventional aperture and other patterns 

proposed for defocus deblurring in [2-4]. It must be 

mentioned, among several patterns proposed in [2], we 

choose the pattern provided for noise (σ~N(0,0.001)). The 

reason is that Zhou et al. reported that this pattern in general 

is more efficient than other patterns proposed by them [2]. 

In the rest of this section, first, the spectral response of 

these apertures are compared. Then, deblurring results of 

images captured with them are evaluated by simulation 

and real experiments. 

4.1 Analysis in Spectral and Spatial Domain 

As mentioned before, optimal apertures for defocus 

deblurring seek a smooth spectral response while 

transmitting light as much as possible. Figure 4.a shows 

1D slice of Fourier transform of our patterns in 

comparison with other patterns and circular aperture. It 

shows our patterns keep high spatial frequencies and have 

less fluctuation. We also compare these patterns in spatial 

domain. For each pattern, a convolution matrix (blurring 

matrix) of the blurring kernel is computed. Then, singular 

values of each matrix are determined using SVD. The 

slop of singular values shows attenuation rate of 

information in the captured image in any direction [21]. 

Plotted values in Figure 4.b show that the blurring matrix 

of our pattern has larger singular values in higher 

frequencies that lead to less attenuation of details in the 

defocused captured image. The singular values in the 

semi-symmetric pattern are smaller than asymmetric one 

while greater than other patterns in most of frequencies. 

Therefore, better deblurring results are expected of both 

our asymmetric and semi-symmetric patterns. 

 

 

(a) (b) 

Fig. 4. Spectral and SVD analysis of patterns. Log spectrum(a) and 

Singular values(b) of conventional pattern(green) and patterns proposed 

in[3] (blue), [2] (magenta), [4](cyan) and proposed asymmetric(black) 

and semi-symmetric(red) patterns. 

4.2 Performance Comparison of Apertures 

In this part, results of our experiments are 

demonstrated. At first, the mentioned apertures are 

evaluated via simulation in different scenarios. Then 

deblurring results of real scenes are examined. 

 

4.2.1 Performance Evaluation via Simulation 

The imaging system is simulated as described in 

Section 3. Then the patterns studied in Section 4.1 are 

examined. For each pattern, 20 various images are blurred 

and then various amount of additive noise are added 

synthetically. These images include some outdoor images 

selected from an image database [31] and some indoor 

images taken with a handheld camera. Then, images are 

deblurred using the modified Wiener algorithm [2]. 

Tables 2-4 show results of this experiment in three 

different sizes of blur. Each entry of these tables indicates 

the average of the labeled measure over 20 images. In the 

smallest blur scale (blur-size = 5), the pattern proposed in 

[3] and our semi-symmetric pattern provide better results 

and our asymmetric pattern has the second rank. However, 

by increasing the blur scale, the proposed asymmetric 

pattern gives better results than other apertures. 

Interestingly, in many situations our semi-symmetric 

pattern provides better results compared to asymmetric 

patterns proposed in [2,4]. 

 

Table 2. Performance evaluation of three apertures across four different levels of noise (blur size = 5). 

Quality 

 σ 

RMSE VIF Q 

Conv. Veera. Z.001 Masia Sym. Asym. Conv Veera. Z.001 Masia Sym. Asym. Conv. Veera. Z.001 Masia Sym. Asym. 

0.001 

0.005 

0.01 

0.02 

0.0221 

0.0442 

0.0538 

0.0624 

0.0089 

0.0297 

0.0435 

0.0586 

0.0159 

0.0403 

0.0547 

0.0695 

0.0176 

0.0397 

0.0512 

0.0643 

0.0115 

0.0261 

0.0363 

0.0487 

0.0097 

0.0298 

0.0430 

0.0570 

0.8575 

0.7061 

0.6232 

0.5235 

0.9627 

0.7747 

0.6423 

0.5100 

0.8934 

0.6604 

0.5439 

0.4367 

0.9427 

0.7418 

0.6132 

0.4835 

0.9506 

0.8235 

0.7184 

0.5869 

0.9609 

0.7832 

0.6645 

0.5360 

1.8355 

1.6619 

1.5693 

1.4611 

1.9538 

1.7450 

1.5989 

1.4514 

1.8775 

1.6201 

1.4891 

1.3672 

1.9251 

1.7020 

1.5620 

1.4192 

1.9391 

1.7974 

1.6822 

1.5383 

1.9511 

1.7534 

1.6215 

1.4789 

Avg on σ 0.0456 0.0352 0.0451 0.0432 0.0306 0.0349 0.6776 0.7224 0.6336 0.6953 0.7699 0.7361 1.6320 1.6873 1.5885 1.6521 1.7393 1.7012 

Table 3. Performance evaluation of three apertures across four different levels of noise (blur size = 13). 

Quality 

 σ 

RMSE VIF Q 

Conv. Veera. Z.001 Masia Sym. Asym. Conv Veera. Z.001 Masia Sym. Asym. Conv. Veera. Z.001 Masia Sym. Asym. 

0.001 

0.005 

0.01 

0.02 

0.0562 

0.0775 

0.0887 

0.1011 

0.0200 

0.0461 

0.0612 

0.0786 

0.0174 

0.0448 

0.0642 

0.0859 

0.0261 

0.0558 

0.0707 

0.0854 

0.0237 

0.0454 

0.0582 

0.0759 

0.0174 

0.0431 

0.0590 

0.0755 

0.5196 

0.3760 

0.3149 

0.2545 

0.8519 

0.5408 

0.4631 

0.3436 

0.8586 

0.5412 

0.4004 

0.2848 

0.7748 

0.5218 

0.4118 

0.3143 

0.7389 

0.5557 

0.4624 

0.3444 

0.8768 

0.6029 

0.4659 

0.3456 

1.4634 

1.2985 

1.2262 

1.1534 

1.8319 

1.4947 

1.4019 

1.2651 

1.8412 

1.4964 

1.3362 

1.1989 

1.7487 

1.4660 

1.3411 

1.2289 

1.7152 

1.5103 

1.4042 

1.2685 

1.8594 

1.5598 

1.4069 

1.2701 

Avg on σ 0.0809 0.0515 0.0531 0.0595 0.0508 0.0488 0.3662 0.5499 0.5212 0.5057 0.5253 0.5728 1.2854 1.4984 1.4682 1.4462 1.4745 1.5241 
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Table 4. Performance evaluation of three apertures across four different levels of noise (blur size = 21). 

   Quality 

 σ 

RMSE VIF Q 

Conv. Veera. Z.001 Masia Sym. Asym. Conv Veera. Z.001 Masia Sym. Asym. Conv. Veera. Z.001 Masia Sym. Asym. 

0.001 

0.005 

0.01 

0.02 

0.0677 

0.0933 

0.1060 

0.1187 

0.0337 

0.0589 

0.0729 

0.0894 

0.0343 

0.0615 

0.0788 

0.0991 

0.0453 

0.0748 

0.0893 

0.1035 

0.0403 

0.0610 

0.0718 

0.0853 

0.0328 

0.0562 

0.0689 

0.0855 

0.3824 

0.2640 

0.2124 

0.1697 

0.7631 

0.4888 

0.3728 

0.2735 

0.7360 

0.4486 

0.3245 

0.2273 

0.6055 

0.3828 

0.2962 

0.2252 

0.6494 

0.4690 

0.3820 

0.2949 

0.8035 

0.5300 

0.4077 

0.2949 

1.3147 

1.1707 

1.1064 

1.0509 

1.7293 

1.4299 

1.3000 

1.1841 

1.7017 

1.3871 

1.2458 

1.1282 

1.5602 

1.3080 

1.2069 

1.1217 

1.6091 

1.4080 

1.3102 

1.2096 

1.7707 

1.4738 

1.3388 

1.2094 

Avg on σ 0.0964 0.0637 0.0684 0.0782 0.0646 0.0609 0.2571 0.4746 0.4341 0.3774 0.4488 0.5090 1.1607 1.4108 1.3657 1.2992 1.3842 1.4482 

 

4.2.2 Performance Evaluation in Real Scenes 

For real experiments, the proposed patterns are printed 

as well as some other patterns on a single photomask 

sheet. To experiment with a specific aperture pattern, it is 

cut out of the photomask sheet and inserted into a camera 

lens. In our experiment, a Canon EOS 1100D camera with 

an EF 50mm f/1.8 II lens is used. The assembled lenses 

with the proposed masks are shown in Figure 5. 
 

  

Fig. 5. Lens assembled with proposed masks. 

A very thin LED is used to calibrate the true PSF. The 

LED is mounted behind a pierced black cardboard to make 

a point light source. For each aperture pattern, the camera 

focus is set to 1.2m. Then, the camera is moved back until 

2m in 10cm increments. At each depth, an image is captured. 

Each image is cropped according to the surface that the 

point light spreads. In many cases, the size of resulting PSF 

is close to the blur size that can be approximated based on 

thin lens formula, depth and the parameters of the camera 

[7]. Afterward, by using some threshold values, residual 

light is cleared and the result is normalized. It is a common 

way to estimate PSF [3, 4]. To have a fair comparison, in 

all experiments, we use the same setting of [4]. The camera 

is set to F# = 2, Te = 1/20sec, ISO-sensitivity = 200, 

resolution 1  =S3. According to [28], the illumination 

condition is adjusted as office room. The selected camera 

resolution produces images in size of 720×480 with pixel-

size 30.6μm. Since in computing mask resolution the pixel-

size is set to 11.5μm, our pattern could also be used with 

camera resolution= S2 without concerning about diffraction. 

However, we choose resolution S3 that confirms us other 

patterns with smaller holes, which are studied in our 

experiments, provide no diffraction. Regarding to the 

selected resolution and depth range, the size of calibrated 

PSFs are varies between 5 and 15 pixels which are almost 

equal to blur scales that were used for computing weights 

(Section 3). Figure 6 shows some calibrated PSFs of 

patterns used in our experiments. 

                                                           
1. In Canon1100D, images could be taken in 5 different resolution  

(L, M, S1;S2;S3) that takes images in size 4272×2848, 3088×2056, 

2256×1504, 1920×1280 and 720×480, respectively. 

 

Fig. 6. Calibrated PSFs for some of the evaluated patterns in depth 80cm. 

Experiment 1. 

In the first test of a real scene, Circular Zone Plate 

Chart (CZP) is placed at different depths (10, 30, 50,70cm) 

and one image is captured at each depth. Imaging noise is 

estimated about 0.01. It is estimated by some tests on 

uniform and unicolor scenes. Therefore, Wiener filter with 

NSR= 0.01 is used for deblurring. The blurred captured 

images are restored with the calibrated PSFs of each pattern. 

Figure 7 shows deblurred results in depth 70cm. Notice that 

the captured images have different brightness levels since 

different apertures absorb different amounts of light. 

We also perform a quantitative analysis to compare 

the performances of these apertures. In each depth, a 

defocus image is captured. Then, without moving camera 

or chart, an all-focused version is also captured. After 

restoration, the deblurred image is aligned carefully to its 

corresponding focused one. Then, quality of deblurred 

images is assessed in comparison with their focused ones. 

Figure 8 shows RMSE, VIF and Q measure of the 

restored images. It shows both the proposed patterns give 

better performance compared to other apertures. However, 

like simulation results (see tables 2-4), in lower depths 

(i.e. smaller blur scale), the semi-symmetric pattern yields 

better results than the asymmetric one. By increasing 

depth, our asymmetric pattern outperforms than the semi-

symmetric pattern. It can be explained by studying the 

frequency responses of these two masks. In smaller blur 

scales, the blurring kernels of both masks have almost flat 

frequency responses. However, the asymmetric pattern 

falls behind the semi-symmetric one because of a fall in 

its frequency response in the normalized frequency of 

0.25 (see Fig. 4.a). By increasing the blur scale, the 

asymmetric pattern, which has higher frequency response 

and less fluctuation in high spatial frequencies, 

outperforms than the semi-symmetric one. As shown in 

Table 5, this result is also predicted by computing the 

fitness value of these two patterns for different blur scales.  

Table 5. The fitness value (Eq.13) of the asymmetric and semi-symmetric 

patterns for different blur scales (r = 1..6). Smaller value means better fitness 

6 5 4 3 2 1 r 

42.46 42.19 42.58 41.65 40.33 38.67 F(Asym.) 

42.6 42.97 44.48 41.99 39.51 37.19 F(Semi-sym.) 
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The results of our real experiment are similar to the 

ones obtained in the simulation experiment. However, 

there is a difference between simulation and real ones. In 

the real experiment, the range of VIF values are less than 

values obtained by simulation, while RMSE has nearly 

the same range of values. It shows VIF is more sensitive 

to visual effects of deblurred images. This sensitivity 

causes VIF to have more variation than RMSE. As a 

result, Q measure is sometimes biased to VIF value. 

Indeed, if we want to have more emphasis on RMSE, we 

should study about using a weighted sum in Eq.5. 

Experiment 2. 

Experiment 1 is repeated for other real scenes in 

different depths. Because of multiplicity of the studied 

apertures, the results of only three scenes are shown that 

contain details in different sizes and include various types 

of edges. Figure 9 contains a scene with details and letters 

in various sizes in depth 80cm. Although deblurring result 

of each pattern has some drawbacks, our patterns provide 

better results. Figure 10 contains a face with some letters 

and curve edges in depth 60cm. As shown in Figure10, 

deblurring results of our proposed pattern provide fewer 

artifacts. Figure 11 contains a scene in depth 40cm.  

For evaluating the deblurring results, a subjective 

quality assessment is also performed by assigning a score 

out of 10 (0: lowest, 10: highest quality) to the restored 

images. To this aim, ten experts evaluated the restored 

images. Table 6 shows the average of given scores. 

Table 5. The average of subjective scores assigned to the deblurring 

results (Fig. 9-11) of different masks. 

 Veera.[3] Zhou001[2] Masia[4] Asym Sym 

Fig. 9 (Depth = 80) 5.5 5.8 5.2 6.3 6.1 

Fig. 10 (Depth = 60) 8 7.9 7.8 8.3 8.35 

Fig. 11 (Depth = 40) 8.3 8.15 8.1 8.35 8.3 
 

As shown in Table 6, by decreasing the depth, all of the 

patterns provide acceptable results and just a few drawbacks 

are seen in some patterns. As a result, the main difference of 

the available patterns must be studied in deeper scenes in 

which high frequencies are more attenuated. 

 

Fig. 7. (a)-(f) Deblurred result of captured images with circular aperture and 

some other masks in depth 70cm. Bottom- left corner of each image depicts 

the mask used in each case Last row shows close-up of deblurred images. 

 

Fig. 8. Deblurring results of CZP resolution chart in 4 different depths. 

Q-value is computed according to Eq. 4. (Green: Circular aperture, Blue: 

Veeraraghavan et al. [3], Magenta: Zhou et al. [2], Cyan: Masia et al.[4], 

Black: Our asymmetric mask, Red: Our semi-symmetric mask. 
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Fig. 9. Captured image and deblurred result in depth 80cm for five different 

apertures (a) Veeraraghavan[3], (b) Zhou[2], (c) Masia[4], (d) Asymmetric 

and (e) semi-symmetric patterns. (f) Close-ups of deblurred images. 

 

Fig. 10. (a)-(e) Captured images (left) and deblurred results (right) for 5 

different aperture patterns in depth 60cm, (f) Close-ups of (a)-(e). Top- 

left corner of each image depicts the mask used in each case. 
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Fig. 11. (a)-(e) Captured images(left) and deblurred results (right) for 5 

different aperture patterns in depth 40cm. Bottom- left corner of each 

image depicts the mask used in each case. 

5. Conclusion and Future Work 

In this paper, some new criteria are introduced to 

evaluate coded aperture patterns that are designed for 

deblurring. They are defined to measure the similarity of 

the derived filter of a pattern with an all-pass filter. Based 

on these criteria a new fitness function is proposed to 

evaluate aperture patterns. The coefficients used in this 

function are chosen so that the function has the least error 

in evaluating of a pattern. 

To our best knowledge, the first semi-symmetric 

pattern for deblurring is proposed in this study. 

Symmetric patterns are rotation invariant. Therefore, most 

photographers would like to use symmetric apertures if 

they exist, while all existing masks are asymmetric. Our 

experiments show that symmetric patterns are slightly less 

efficient than asymmetric ones, although they provide 

acceptable results.  

It should be mentioned, while we have proposed a 

semi-symmetric pattern, designing a full-symmetric 

pattern is still an open problem. 

In this research, an aggregate measure including VIF 

and RMSE is introduced to assess the quality of 

deblurring results. Our experiments show that the 

sensitivity of VIF measure is more than RMSE. Therefore, 

the proposed aggregate measure may be biased to VIF 

value. Designing a weighted aggregate measure might be 

investigated in future studies. 
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