Implementation of Uplink and Downlink Non-Orthogonal Multiple Access (NOMA) on Zync FPGA Device

Ahmed Belhani1*, Hichem Semira2, Rania Kheddara1, Ghada Hassis3

1. Laboratoire Satellites, Intelligence Artificielle, Cryptographie, Internet des Objets « LSIACIO», Constantine 1 University, Algeria
2. Electronics and New Technologies Laboratory (ENT), University of Oum El Bouaghi, Algeria
3. Department of Electronics », Constantine 1 University, Algeria.

Received: 24 Jan 2022/ Revised: 04 Sep 2022/ Accepted: 02 Oct 2022

Abstract
The non-orthogonal access schemes are one of the multiple access techniques that are candidates to become an access technique for the next generation access radio. Power-domain non-orthogonal multiple-access (NOMA) is among these promising technologies. Improving the network capacity by providing massive connectivity through sharing the same spectral resources is the main advantage that this technique offers. The NOMA technique consists of exploiting the power domain which multiplex multiple users on the same resources applying a superposition coding then separating the multiplexed users at the receiver side. Due to the non-orthogonality access technique, the main disadvantage of NOMA is the presence of interferences between users. That is why this scheme is based on a successive interference cancelation (SIC) detector that separates the multiplexed signals at the receiver. In this paper, an embedded system is considered for designing and implementation of the power-NOMA for two users. The implementation is realized by employing a Zynq FPGA (Field programmable gate array) device through the Zybo-Z7 board using MATLAB/Simulink environment and Xilinx System Generator. The features offered by this device, hems to consider the design of an uplink and a downlink scenario over Rayleigh fading channel in additive white Gaussian noise (AWGN) environment.

Keywords: Non-Orthogonal Multiple Access (NOMA); Successive Interference Cancelation (SIC); Multi-use Detection; Bit Error Rate (BER); QPSK; BPSK; Xilinx System Generator (XSG).

1- Introduction
The phenomenal development in communication systems and Internet of Things (IoT) has increased the demand for better internet connections, higher data rates, less latency, fairness, better Quality of Service (QoS), and reduced interference [1][2]. Communication networks in the next generation (5G and beyond) aspire to achieve high efficiency [2], through more users in the limited available spectrum [1]–[5] by applying a new Medium Access Control (MAC) called NOMA technique[5]. In recent years, NOMA-IoT has attracted many researchers in academia [5]–[8]. This growing interest is due to the fact that the NOMA technique is a good candidate to address some of the challenges regarding the radio spectrum scarcity. Dealing with this shortage is one of the challenges to ensure a massive machine-type communication (MMTC) (e.g., IoT framework) by attaining ultra-low latency and high reliability.

The conventional technique OMA (Orthogonal multiple access) permits multiple access by limiting the number of users to the number of available resources based on the orthogonality between users [5]. Some of these techniques are, time division multiple access (TDMA), frequency division multiple access (FDMA), and code division multiple access (CDMA)[9]. These techniques are the reasons why the OMA scheme cannot meet the demands of concurrent users due to the resource shortage, especially against the increasing number of connected devices in the IoT network [10]. Contrarily, NOMA uses the same frequency block and the same time slot by assigning different power levels or by multiplexing signals in code domain [1][2], which helps to enhance the bandwidth reuse and connectivity density [6].
While OMA systems use orthogonal resource allocation among users to avoid interference [1], the NOMA technique intentionally introduces interference because of its principle of access and superposition of users’ data. Consequently, the successive interference cancellation (SIC) technique has been widely adopted in the NOMA literature as a solution to eliminate the inter-user interference. In SIC, the first step consists of estimating the strongest signal by treating other superposed signals as noise. In the second step, the decoded signal is subtracted from the received signal to retrieve the weakest signal [8].

From an information theoretic viewpoint, the fundamental potential of NOMA over OMA has been proved. Indeed, most of the analytical studies handled in terms of information-theoretical perspectives, have revealed the efficiency of the SIC detector in both schemes uplink-NOMA and downlink-NOMA e.g. [11]–[13]. These analyzes are based on the SINR (Signal to Interference and Noise Ratio) definition and then they provide theoretical limits for throughput or outage probability. However, in throughput or outage analysis the SIC algorithm is not implemented. Therefore, the analysis could only give inferences for theoretical limits. In other words, the NOMA system with its transmitter and receiver (SIC algorithm) is not implemented or simulated while assuming perfect SIC. Hence, in real world application, to analyze the error performance of the NOMA schemes (in terms of bit error rate BER), we should implement an IQ (in-phase and quadrature inputs) modulator at the transmitters and based on the superimposed received signal, we should implement an IQ detector to decide the transmitted symbols (bits) of each user. This implementation could give us a clear idea about the imperfections of the detection technique (i.e. subtraction of the erroneous detected symbol) [13].

To study the efficiency of the SIC receiver, a practical downlink-NOMA system based on LTE specifications using an open-source software platform named Open Air Interface have been investigated in[3]. The experiment results of the work demonstrate that the NOMA scheme has a significant throughput gain compared with an orthogonal multiple access (OMA) scheme. Currently, the use of FPGAs in research and development of embedded systems is applied to specific tasks is increasing [15], for many valuable advantages such as its great flexibility [15], which allows the re-use of any circuit as desired in different structures in a very fast time, high clock frequency, high operations per second, and parallel processing [15]. FPGAs are widely used in the communication field to benefits their capacity, function and reliability [16] such as the space-time coding and decoding algorithms for MIMO Communication system presented in [17], and the FPGA implementation of a Pseudo Chaos-signal generator for secure communication systems in [18].

In addition, the implementation of differential frequency hopping communication system is studied in [19]. In [20], NOMA technique is experimentally investigated over AWGN channel using FPGA. The authors propose an implementation based on VHDL programming for two users in the downlink scenario. In addition to the design of the transmitter and the SIC in receiver, the authors relied on a Box-Muller method for noise generation. Furthermore, the performance is verified by comparing the Monte-Carlo simulation results via MATLAB showing exact matching with that of the designed NOMA system. However, this study is only limited to the downlink scheme over AWGN environment which is not reasonable for practical situation, where the channel coefficients are consistently present to affect the received signal (path loss, fading and shadowing). In this paper, we propose the implementation on FPGA of a real-time transmission concept of the power domain NOMA for both scenarios: downlink and uplink over Raleigh fading channel. At first, derived from Monte-Carlo simulation via MATLAB, we study the performance of power NOMA technique in both schemes using QPSK and BPSK modulation. Hence, for proper implementation and avoiding overlap between the users’ symbols, the power allocation principle is assured for the downlink scheme, on the other hand, we keep the uplink scheme without scheduling of power allocation as the users use their own power. Afterwards, with the assumption of two users like the work of [20], and based on Xilinix system generator (XSG) which is a high-level design tool that allows the use of the MATLAB / Simulink environment, we design the functional blocs for an implementation of the power NOMA technique on the FPGA Zybo Z7 card for both schemes (downlink and uplink). This implementation is made simple by using Xilinix library to create elements allowing FPGA hardware design without resorting to HDL programming [21].

The rest of the paper is organized as follows. Section 2 presents some assumptions used in the work, while section 3 illustrates the system and the channel models. section 4 shows the simulation results obtained for both link: downlink and uplink over Rayleigh fading channels and AWGN. In section 5, we describe the FPGA card used in the work and the waveforms of the system generator models with the RTL schemes. Finally, a conclusion is presented in section 6.

2- Assumptions

In this work, we assume the presence of two users in the network, this assumption is due to the fact that regardless
of the number of users, the remote user always considers other users signals as just additive noise as defined by NOMA theory [20]. Moreover, we assume that the power allocation factors \(a_N \) and \(a_F \) used for the two users are known, and that the path is non-selective.

In the uplink scenario, the base station is free of scheduling the power allocation as long as each user uses and manages its own battery. Hence, we assume that each user uses its own battery power to the maximum with a factor equal to 1.

3- NOMA Model

This section presents the NOMA model in power domain for both links.

3-1- Downlink NOMA

In a downlink scheme shown in Figure 1, we consider two users equipped with one antenna served by a base station (BS) equipped with a single transmitting antenna (Single Input Single Output (SISO)). The BS transmits with power \(P \) the signals of users superposed on the same resource block. The superposition is realized at the BS by adding the different symbols after power scaling both symbols are combined using superposition coding principle (SC); the more power is allocated to the far user (FU); the less power allocation ratio is allocated to the near user (NU), i.e., the information for both users is multiplexed in the BS using the same resource block (frequency/time) by allocating each user a different power coefficient by virtue of its channel conditions. The power allocation ensures fairness for all users by maintaining a specific BER thresholds for each user [22]. Hence, the signals \(y_k \in \mathbb{C}, k \in (F,N), \) received by users are described as shown by Eq. (1):

\[
y_k = h_k (\sqrt{a_F P_N} + \sqrt{a_N P_F}) + n_k, \quad k \in (F,N),
\]

where \(h_k \) denotes the flat fading channel coefficients between the BS and the \(k \)th user, i.e. \(k \in (F,N) \). The independent and non-identical Rayleigh fading channel coefficients \(h_k, k \in (F,N) \) are modeled as complex Gaussian random variables with zero mean and variance \(\mathbb{E} |h_k|^2 \), i.e., \(h_k \sim \mathcal{CN} (0, \mathbb{E} |h_k|^2) \), \(k \in (F,N) \), where \(|\cdot|\) denotes the absolute value and \(\mathbb{E} [\cdot] \) is statistical expectation. At each \(k \)th user the channel coefficients \(h_k, k \in (F,N) \) is supposed to be known, such that \(|h_F| < |h_N| \).

As a consequence, the power allocation factors \(a_N \) and \(a_F \) are assigned such that \(a_F + a_N = 1 \). \(n_k \sim \mathcal{CN} (0,N_0/2), k \in (F,N), \) is the additive white Gaussian noise (AWGN) which is added at each node (each user’s receiver) independently.

The information bits are modulated as complex symbols \(s_F, s_N \) using a phase modulated signals for both users, they can be a QPSK modulation signals which can take four possible complex values defined as \(s_k = \pm 1 \pm j1 \), \(k \in (F,N) \), resulting from the mapping of two bits, or a BPSK modulation signals which can take one of the two possible symbols \(\pm 1 \).

In the network, all users receive the same signal, which contains the information of all users. This requires a suitable detector to eliminate interference in each equipment. Since a large part of the power has been allocated to the FU, a maximum likelihood detector (MLD) is sufficient to detect the information of this user by considering the signal of the NU as interference. On the other hand, the NU must first detect the interference signal (FU) as its own symbol is noise. In the second step, it removes the detected symbol from the received signal \(y_N \) in order to detect its own symbol. This procedure is known as successive interference cancelation (SIC), and it is clear that the performance of the system depends on the channel qualities and the power allocation coefficients [13]

3-2- Uplink NOMA

As shown in Figure 2, Similar to the downlink scenario, the uplink scheme is composed of one base station and two users. Even in this scenario, we assume that each node is equipped with a single antenna (SISO-NOMA). With transmit power \(P_k, k \in (F,N) \), limited by the
maximum power of the user battery, each user can independently use its own power P_k to transmit its symbols on the same frequency block within the same time slot. Therefore, the received signal $y \in \mathbb{C}$ at the BS is given by Eq. (2):

$$y = h_N\sqrt{P_N} s_N + h_F\sqrt{P_F} s_F + n$$

(2)

where the Rayleigh fading channel coefficients h_k, $k \in (F,N)$, between the users and BS are independent and identically distributed. s_N and s_F are the complex modulated information from QPSK or BPSK modulation. n denotes the AWGN at BS receiver. Like the downlink scenario it is assumed that $\sqrt{P_F} |h_F| < \sqrt{P_N} |h_N|$. By virtue of the quality of the channel and the level of received power, firstly, the BS attempts to detect the symbols of the NU using MLD by considering the signal received from the FU ($h_F\sqrt{P_F} s_F$) as noise. Secondarily, after having removed the detected symbol ($h_N\sqrt{P_N} s_N$, where \hat{s}_N denotes detected s_N), the BS attempts to detect the symbols \hat{s}_F using MLD.

To illustrate the performance of the NOMA system in the downlink scheme, we use the parameters presented in the table 1.

<table>
<thead>
<tr>
<th>Table 1: Simulation Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monte Carlo runs</td>
</tr>
<tr>
<td>Power allocation factors for the near user</td>
</tr>
<tr>
<td>Power allocation factors for the far user</td>
</tr>
<tr>
<td>System frequency</td>
</tr>
<tr>
<td>Rayleigh Channel parameters</td>
</tr>
<tr>
<td>Path Delays</td>
</tr>
<tr>
<td>Average Path Gains</td>
</tr>
<tr>
<td>NU:</td>
</tr>
<tr>
<td>FU:</td>
</tr>
<tr>
<td>Maximum Doppler Shift</td>
</tr>
</tbody>
</table>

Figures 4, 5 and 6 show the simulation results for the bit error rate (BER) against the Signal to Noise ratio per bit (Eb/No) for different scenarios. In figure 4, we consider a QPSK modulation for both users with different power allocation. We can easily observe the influence of the power allocation coefficients on the performance of the system. The more the symbols of the different users are well separated in power, the more we prevent the constellations overlap of different users. Furthermore, the curves show that the BER of FU is better than that of NU for $a_N = 0.2$ and $a_F = 0.8$, which shows the compensation of the effect of the channel with the enhancement of the symbols power for the FU.

In the second scenario in which the same power allocation factors are maintained, we consider two cases of modulation: Fixed QPSK modulation for both users, and adaptive modulation for the second case. In adaptive modulation, a BPSK modulation is chosen for the FU which suffers from the worst channel condition, and a QPSK modulation is used by the NU which benefits from high channel quality. For different power allocation factors, the Figures 5 and 6 show clearly the improvement of the BER for the adaptive modulation compared to the fixed modulation. In addition to avoiding overlap between the symbols of different users, the low order modulation compensates the effect of the channel by increasing the power of the symbols and also by helping the detection threshold to be improved when using the MLD for both users.

4- Simulation and Main Results

4-1- Downlink

Fig. 3 shows the flowchart of the downlink-NOMA system. Firstly, we generate a random data for both users then we modulate them using either a QPSK modulation or a BPSK modulation, after, we multiply the two signals by the power allocation factors a_N and a_F.

In the next step, we combine the two signals to construct the NOMA signal x_{NOMA} multiplied by the Rayleigh coefficients for each user, and then we start the estimation process after adding the white noise for each user separately.

The FU estimates its data directly from the received signal via a minimum-distance criterion (MLD), whereas the NU utilizes the SIC technique to obtain its symbols.
Start

Generate random binary data for both users.

Modulate the generated data to obtain: s_N, s_F

Construct the NOMA signal in the base station: $x_{\text{NOMA}} = \sqrt{a_F} s_F + \sqrt{a_N} s_N$

Multiply the NOMA signal with the Rayleigh fading coefficient of each user:

near user: $h_N \ast x_{\text{NOMA}}$

far user: $h_F \ast x_{\text{NOMA}}$

Additive white Gaussian noise (AWGN)

Detect then decode the strongest signal (considered as interference)

Detect then decode the strongest signal

Reconstruct the detected signal (modulation and multiplication with the Rayleigh coefficient)

Subtraction of the reconstructed signal from the received signal interference elimination

Detect then decode the result of the subtraction

Estimation of the near user’s data

Estimation of the far user’s data

Additive white Gaussian noise (AWGN)

Fig. 3 Flowchart of the Downlink NOMA.
4-2- Uplink

Figure 7 shows the flowchart of the uplink–NOMA system. Like the previous scheme, we randomly generate the binary data for each user then we modulate them by using either a QPSK modulation or a BPSK modulation according to the channel quality. Unlike the previous diagram, in the uplink-NOMA scheme, each user sends its own data using its own power (power battery) toward the BS, which results in multiplication by independent Rayleigh coefficients and power. In consequence, the two signals are firstly multiplied by different Rayleigh coefficient (h_N for the NU and h_F for the FU) and Powers (P_N for the NU and P_F for the FU) according to their distance from the base station and their own battery. After that, the signals are multiplexed at the BS. Finally, the estimation process begins after the white noise is added.

The base station estimates the NU data directly through the ML detector by considering the FU data as noise. In the next step, the BS tries to detect the far user’s symbols via MLD after subtracting the detected signal (previous step) from the received signal.

To illustrate the behavior of the SIC algorithm with the performance of the uplink-NOMA scheme, we adopt the same simulation parameters of the downlink-NOMA scheme. The figures 8 and 9 show the performance of the BER versus EbN0 in the uplink-NOMA system for two types of modulations QPSK and BPSK. To show the performance, we present two scenarios: fixed modulation and adaptive modulation in proportion to the quality of the channel. In all the simulation, we assume that $P_N = P_F$, which reflects a practical situation where the two users transmit with the same power like the IoT devices.

It can be seen from the two figures that the performance of the FU is better than the performance of Nu in terms of BER. This superiority is due to the use of SIC detector at the base station to estimate the FU’s data, which suppresses the strong signal assumed to be interference. On the other hand, the base station only uses the maximum likelihood detector to extract the NU’s data, which suffers from the presence of FU’S symbols considered as noise. Despite these results, we can notice from all the curves in uplink-NOMA scheme that the SIC presents a poorer performance in high SNR regime and clearly suffers from the error floor [13][23][24]. According to the figures 8 and 9, we observe that increasing the transmit power (high SNR) or using low order modulation (BPSK) at the receiver cannot remove the error floor. Indeed, whatever the improvements, the SIC detector remains unable to detect the symbols of the different users in a high SNR regime, which is an inevitable result because other signals are treated in a sequential manner on the basis that they are noise.

![Fig. 7 Flowchart of the Uplink NOMA.](image-url)
In this section a Zybo Z7 card based on Zynq-7020 device is used to implement the power domain NOMA technique for both schemes: downlink and uplink. This choice is based on its features and connectivity [15] illustrated by table 2. The power tool system generator of Xilinx is combined with Matlab/Simulink to design the NOMA signal and build VHDL project, which is transferred to VIVADO suite for waveform generation through test bench.

Table 2: Zybo-Z7 Characteristics

<table>
<thead>
<tr>
<th>ZYBO Z7 features</th>
<th>ZYBO Z7 specifications</th>
<th>ZYBO Z7 connectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>667MHz dual-core</td>
<td>Clock Resources Zynq PLL</td>
<td>Wide range of USB,</td>
</tr>
<tr>
<td>Cortex-A9 processor with</td>
<td>with 4 outputs</td>
<td>Ethernet</td>
</tr>
<tr>
<td>tightly integrated Xilinx FPGA</td>
<td>4 PLLs (2 PLLs*)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 MMCMS (2 MMCMS*)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>125 MHz external clock</td>
<td></td>
</tr>
<tr>
<td>High-bandwidth peripheral controllers:</td>
<td>Block RAM:630 KB (270 KB*)</td>
<td>Pcm camera connector</td>
</tr>
<tr>
<td>1G Ethernet, USB 2.0, SDIO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programmable from JTAG, Quad-SPI flash, and microSD card</td>
<td>Internal ADC Dual-channel</td>
<td>HDMI sink port (input)</td>
</tr>
<tr>
<td>DDR3L memory controller with 8 DMA channels and 4 High Performance AXI3 Slave ports</td>
<td>DSP Slices :220 (80*)</td>
<td>6 Pmod ports (5*) :8 Total Processor I/O</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.40 Total FPGA I/O (32*)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.4 Analog capable 1.0V differential pairs to XADC</td>
</tr>
</tbody>
</table>

5- Implementation of NOMA Models Using System Generator and ZYBO-Z7 Xilinx Card

5-1- Downlink Implementation

Figure 10 shows the NOMA design using Xilinx system generator tools for the downlink, contains: The BPSK modulator, the BPSK demodulator, the transmitted NOMA signal, the received Far user signal and the received near user signal. We have also maintained the same parameters shown in table 1

5-2- BPSK Modulator/Demodulator

The logic elements are used to build all components, like multiplexer, multiplier, adder and delay element. Figure 11 shows the BPSK modulator designed through XSC tools [25].

For the BPSK demodulator, we use the structure defined in [26] and accomplished it by adding a low pass filter design with eleven coefficients presented in table 3 to get more precision. Figure 12 shows the demodulator released through the DSP’s FDA tool from XSG toolbox.
Figures 13 and 14 show clearly the BPSK modulator and demodulator waveforms for the designed models in the downlink. The choice of using a BPSK modulation in the XSG model is only to simplify the design and the results; we can use any type of modulation, for example QPSK modulation [20].
Fig. 13 BPSK Modulator Waveform

Fig. 14 BPSK Demodulator Waveform
5.2.1 NOMA Signal

Figure 15 represents the NOMA signal design for the downlink, where we multiply the BPSK modulated signal of each user with the power allocation factors, and we combine the two signals to obtain the NOMA signal, the result of the waveform is illustrated in figure 18.

![Fig. 15 NOMA Bloc Design for Downlink.](image1)

5.2.2 Far User and Near User

Figures 16 and 17 represent the two designs for the estimation process mentioned above and explained in the flowchart of the downlink. In the other hand, for the far user we implement the SIC technique to estimate the near user's signal (figure17).

In figure 18, we directly demodulate the far user’s signal after passing through Rayleigh fading channel and AWGN.

5.3- Uplink Implementation

Figure 19 shows the NOMA design using Xilinx system generator tools for the uplink, which contains the same blocks used in the downlink.

5.3.1 NOMA Signal

Figure 20 represents the NOMA signal design for the uplink, which contains the two users BPSK modulated signals and the Rayleigh fading channels for each user combined and passed through Rayleigh and AWGN channel.

![Fig. 16 Far User Reception Design for Downlink.](image2)

5.3.2 Far User and Near User

Figures 21 and 22 represent the two designs for the estimation process mentioned above and explained in the flowchart of the uplink; we first estimate the near user’s signal in figure 21, afterwards, the far user’s symbols are detected using SIC procedure using the same received signal as the SIC is implemented in BS.

![Fig. 17 Near User Reception Design for Downlink.](image3)
Fig. 18 NOMA Signal Waveform for the Downlink

Fig. 19 NOMA Design for the Uplink Using Systems Generator and Xilinx Tools.

Fig. 20 NOMA Design for Uplink.
In this paper, the power NOMA technique in uplink and downlink links are studied and implemented on an FPGA device. The implementation is realized for two users supported by one base station over Rayleigh fading channel. In both schemes a successive interference cancelation (SIC) detector is considered in the receiver side to separate the superimposed symbols of users. The Conclusion simulation results reveal the effectiveness of the SIC algorithm to detect the user’s symbols in downlink link by using both modulation: QPSK or BPSK. By contrast, in the uplink scenario where there is no scheduling of power allocation, the SIC fails to detect any symbols in high SNR regime (suffers from the error floor). Besides, to benefit from the advantages offered by the features of the FPGA device, a design of both schemes is realized using the Xilinx system generator. The results of this work may be extended to address the implementation of this promising technique to deal with a massive connection (arbitrary number of users with higher order adaptive modulation) for IoT applications.

Acknowledgement.

The authors thank Dr Cherif chibane from MIT for his help.

References

