

* Corresponding Author

A Model for Mobile Code Computing Paradigms in Computer

Networks

Hodjat Hamidi*
Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran

h_hamidi@kntu.ac.ir

Maryam Parvini
Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran

parvini@mail.kntu.ac.ir

Received: 22/Feb/2016 Revised: 18/Feb/2017 Accepted: 08/Mar/2017

Abstract
This paper presents a reliable model for mobile codes in distributed networks, which represents reliable mobile agent

execution. The model ensures non-blocking mobile agent execution and forces the once property without relying on

correct fault detection. A mobile agent execution is blocking if a fault of agent prevents the agent from continuing in its

execution. The once problem is related to non-blocking in the sense that solutions to the latter may lead to multiple

executions of the mobile agent. A solution to reliable mobile agent execution needs to ensure both the non-blocking and

once properties. The analytical results show new theoretical perceptions into the statistical behaviors of mobile agents and

provide useful tools for executing mobile agents in networks. The results show that agents' behavior is influenced by

places' characteristics and the agents' behavior can be managed to network. In this paper, we analyzed the average time

consuming of mobile agents between two places. The approach, Fault-Tolerant approach for mobile codes offers a user-

transparent fault tolerance which can be selected by the user for every single application given to the environment.

Thereby, the user can decide for every application weather it has to be treated fault-tolerant or not. We proposed a reliable

execution model of mobile codes and analyzed the life expectancy, including the average time consuming of mobile

agents between two places, the average number of places agents will visit, and the agents' life expectancy.

Keywords: Mobile Computing; Mobile Code; Computer Network; Computing Paradigms.

1. Introduction

In view of the deficiencies of the client/server

paradigm, the mobile code paradigm has been developed

as an alternative approach for distributed application

design. In the client/server paradigm, programs cannot

move across different places and must run on the places

they reside on. The mobile code paradigm, on the other

hand, allows programs to be transferred among and

executed on different computers. By allowing code to

move between places, programs can interact on the same

computer instead of over the network. Therefore,

communication cost can be reduced. Besides, mobile

agent [1-2] programs can be designed to work on behalf

of users autonomously. This autonomy allows users to

delegate their tasks to the mobile agents, and not to stay

continuously in front of the computer terminal. The

promises of the mobile code paradigm bring about active

research in its realization. Most researchers, however,

agree that security concerns are a hurdle [3]. In this paper,

we investigate these concerns. A mobile agent is a

software program which migrates from a site to another

site to perform tasks assigned by a user. For the mobile

agent system to support the agents in various application

areas, the issues regarding the reliable agent execution, as

well as the compatibility between two different agent

systems or the secure agent migration, have been

considered. Some of the proposed schemes are either

replicating the agents [4-5] or checkpointing the agents

[6-7]. For a single agent environment without considering

inter-agent communication, the performance of the

replication scheme and the checkpointing scheme is

compared in [8] and [9]. In the area of mobile agents,

only few work can be found relating to fault tolerance.

Most of them refer to special agent systems or cover only

some special aspects relating to mobile agents, e. g. the

communication subsystem. Nevertheless, most people

working with mobile agents consider fault tolerance to be

an important issue [10]. Cluster, and therefore parallel

applications running on them, are very susceptible for

failures of components of the cluster. However,

programmers and users of distributed applications are

interested in their algorithms and solutions. They expect

fault tolerance as a service from the underlying run time

system. These considerations show the necessity for a

design, which enables user-transparent fault tolerance in

agent environments. Current agent systems, and also the

underlying operating systems, provide this feature only

insufficiently, if at all. In this paper we introduce an

approach for such a design. It can be applied to different

agent systems, if they fulfill certain requirements as

discussed below. The approach, Fault-Tolerant approach

for mobile agents offers a user-transparent fault tolerance

which can be selected by the user for every single

mailto:h_hamidi@kntu.ac.ir

Hamidi & Parvini, A Model for Mobile Code Computing Paradigms in Computer Networks

8

application given to the environment. Thereby, the user

can decide for every application weather it has to be

treated fault-tolerant or not.

The paper is organized as follows: Section 2 presents

the main security challenge of mobile code. In Section 3,

the security modeling for the mobile agent and model

failures are explained. In Section 4, the fault-tolerant

execution model is introduced. The simulation result is

discussed in section 5. Conclusion is given in Section 6.

2. The Main Security Challenge of Mobile

Code

The main security challenge of mobile code systems lies

on the protection of agents. When an agent executes on a

remote host, the host is likely to have access to all the data

and code carried by the agent. If by chance a host is malicious

and abuses the code or data of an agent, the privacy and

secrecy of the agent and its owner would be at risk.

Seven types of attack by malicious hosts [2] can be

identied:

 Spying out and manipulation of code;

 Spying out and manipulation of data;

 Spying out and manipulation of control flow;

 Incorrect execution of code;

 Masquerading of the host;

 Spying out and manipulation of interaction with

other agents; and

 Returning wrong results of system calls to agents

There are a number of solutions proposed to protect

agents against malicious hosts [10], which can be divided

into three streams:

 Establishing a closed network: limiting the set of

hosts among which agents travel, such that agents

travel only to hosts that are trusted.

 Agent tampering detection: using specially designed

state-appraisal functions to detect whether agent states

have been changed maliciously during its travel.

 Agent tampering prevention: hiding from hosts the

data possessed by agents and the functions to be

computed by agents, by messing up code and data

of agents, or using cryptographic techniques.

Depending on the choices made on the client and

server sides, the following variants of mobile code

computing paradigms can be identified [11-12]:

 In the Remote Evaluation (REV) paradigm,

component A sends instructions specifying how to

perform a service to component B. These instructions can,

for instance, be expressed in Java byte code. Component

B then executes the request using its own resources, and

returns the result, if any, to A. Java Servers are an

example of remote evaluation [13].

In the Code on Demand (CoD) paradigm, the

resources are collocated with component A, but A lacks

the knowledge of how to access and process these

resources in order to obtain the desired result. Rather, it

gets this information from component B. As soon as A has

the necessary know-how (i.e., has downloaded the code

from B), it can start executing. The mobile agent

computing paradigm is an extension of the REV paradigm.

Whereas the latter focuses primarily on the transfer of

code, the mobile agent paradigm involves the mobility of

an entire computational entity, along with its code, the

state, and potentially the resources required to perform the

task. As developer-transparent capturing and transfer of

the execution state (i.e., runtime state, program counter,

and frame stacks, if applicable) requires global state

models as well as functions to externalize and internalize

the agent state, only few systems support this strong

mobility scheme. In particular, Java-based mobile agent

platforms are generally unsuitable for this approach,

because it is not possible to access an agent‘s execution

stack without modifying the Java Virtual Place. Most

systems thus settle for the weak mobility scheme where

only the data state is transferred along with the code.

Although it does not implicitly transport the execution

state of the agent, the developer can explicitly store the

execution state of the agent in its member attributes. The

values of these member attributes are transported to the

next place. The responsibility for handling the execution

state of an agent thereby resides with the developer. In

contrary to REV, mobile agents can move to a sequence

of places, i.e., can make multiple hops. The mobile code

paradigm is actually a collective term, applicable

wherever there is mobility of code. Different classes of

code mobility can be identified, whereas Ghezzi and

Vigna proposed three of them, namely remote evaluation,

code on demand and mobile agent [14-15].

In particular, the code that is to be executed for the

specific task. In the mobile code paradigms (remote

evaluation, code on demand, and mobile agent), the

know-how moves from one side to another side regarding

where the computation takes place; while in the

client/server paradigm, the know-how is stationary on the

remote (server) side. Resources are the input and output

for the code, whereas processor is the abstract place that

carries out and holds the state of the computation. The

arrows represent the directions in which the specific item

should move before the required task is carried out.

Ghezzi and Vigna's classification, [15], is found to be

comprehensive and representative of most existing mobile

code paradigms (such as the rsh utility, Java applets and

mobile agent systems), and we will base our discussion

on this classification.

3. Security Modeling

There are several fault tolerance issues that need to be

addressed in our approach, just as in other schemes. For

example, when storage space is exceeded in data bin

services, some form of queue management is

implemented (much like routers discard packets under

certain load conditions). One or more trusted third parties

can be used for data collection activities or task agent

Journal of Information Systems and Telecommunication, Vol. 5, No. 1, January-March 2017 9

hosting (instead of the originating host) to allow for

disconnected host operations. Timeout of task agents that

must wait for results of both the computation agent and

the data collection agents can be mitigated by providing

time-based services that determine when agents have been

unreasonably detained or diverted.

As with any multi-agent or mobile agent system,

recovery from errors when messages are not delivered or

when migration is not possible needs to be addressed.

Failure of data bin services would require an alternative

or default data storage service in the network if the host

facility becomes unavailable. Failure of the original task

agent, failure of one or more computation agents, and

failure of data collection agents can be mitigated by such

approaches as the shadow model of [14]. Other work on

fault-tolerance such as [15-42] provides approaches to

mitigate host failures and malicious activity. Denial of

service or random alterations of the code are not

preventable because the agent server has ultimate power

over an agent by having access to executable code and

updatable state—though such activity can be detectable.

When multi-hop agents with dependent (aggregated) data

are used, the ability to mask or guard the function itself is

needed to protect the computation agent against smart

alterations of the code. We are currently researching other

means to accomplish this aspect of agent protection [16]

and plan to incorporate future results in consideration of

multi-hop migrations. We also do not address the ability

to keep keys used by both the computation and collection

agent private, though it is an important issue with planned

future research along the lines of work such as [17-18].

Several types of faults can occur in agent

environments. Here, we first describe a general fault

model, and focus on those types, which are for one

important in agent environments due to high occurrence

probability, and for one have been addressed in related

work only insufficiently.

- Node failures: The complete failure of a compute

node implies the failure of all agent places and

agents located on it. Node failures can be temporary

or permanent.

- Failures of components of the agent system:

Failures of agent places, or components of agent

places become faulty, e. g. faulty communication

units or incomplete agent directory. These faults can

result in agent failures, or in reduced or wrong

functionality of agents.

- Failures of mobile agents: Mobile agents can

become faulty due to faulty computation, or other

faults (e. g. node or network failures).

- Network failures: Failures of the entire

communication network or of single links can lead

to isolation of single nodes, or to network partitions.

- Falsification or loss of messages: These are usually

caused by failures in the network or in the

communication units of the agent systems, or the

underlying operating systems. Also, faulty transmission

of agents during migration belongs to this type.

Especially in the intended scenario of parallel

applications, node failures and their consequences are

important. Such consequences are loss of agents, and loss

of node specific resources. In general, each agent has to

fulfill a specific task to contribute to the parallel

application, and thus, agent failures must be treated. In

contrast, in applications where a large number of agents

are sent out to search and process information in a

network, the loss of one or several mobile agents might be

acceptable [19-20].

Places, or agents can fail and recover later. A

component that has failed but not yet recovered is called

down; otherwise, it is up. If it is eventually permanently

up, it is called good [21]. In this paper, we focus on crash

failures (i.e., processes prematurely halt). Benign and

malicious failures (i.e., Byzantine failures) are not

discussed. A failing place causes the failure of all agent

running on it. Similarly, a failing node causes all places

and agents on this node to fail as well. We do not consider

deterministic, repetitive programming errors (i.e.,

programming errors that occur on all agent replicas or

places) in the code or the place as relevant failures in this

Context. Finally a link failure causes the loss of the

messages or agents currently in transmission on this link

and may lead to network partitioning. We assume that

link failures (and network partitions) are not permanent.

The failure of a component (i.e., agent, place, node, or

communication link) can lead to blocking in the mobile

agent execution. Assume, for instance that place fails

while executing (Fig. 1). While is down, the

execution of the mobile agent cannot proceed, i.e., it is

blocked. Blocking occurs if a single failure prevents the

execution from proceeding. In contrast, and execution is

non-blocking if it can proceed despite a single failure, the

blocked mobile agent execution can only continue when

the failed component recovers.

Fig. 1. the redundant places mask the place failure

(Shaded rectangles represent transactional message queues, whereas the
dotted line indicates the borders of a node transaction), [2]

This requires that recovery mechanism be in place,

which allows the failed component to be recovered. If no

recovery mechanism exists, then the agent‘s state and,

potentially, even its code may be lost. In the following,

we assume that such a recovery mechanism exists (e.g.,

based on logging [22-23]. Replication prevents blocking.

Instead of sending the agent to one place at the next node,

agent replicas are sent to a set of places

Hamidi & Parvini, A Model for Mobile Code Computing Paradigms in Computer Networks

10

(Fig. 1). We denote by

 the agent replica of

executing on place

, but will omit the superscripted

index if the meaning is clear from the context. Although a

place may crash (i.e., in Fig. 1), the agent

execution does not block. Indeed,
 can take over the

execution of a1 and thus prevent blocking. Note that the

execution at and is not replicated as the

agent is under the control of the user. Moreover, the agent

is only configured at the agent source and presents the

results to the agent owner at the agent destination. Hence,

replication is not needed at these nodes.

Despite agent replication, network partitions can still

prevent the progress of the agent. Indeed, if the network is

partitioned such that all places currently executing the

agent at are in one partition and the places of

 are in another partition, the agent cannot proceed

with its execution. Generally (especially in the Internet),

multiple routing paths are possible for a message to arrive

at its destination. Therefore, a link failure may not always

lead to network partitioning. In the following, we assume

that a single link failure merely partitions one place from

the rest of the network .Clearly, this is a simplification, but

it allows us to define blocking concisely. Indeed , in the

approach presented in this article, progress in the agent

execution is possible in a network partition that contains a

majority of places .If no such partition exists , the execution

is temporally interrupted until a majority partition is

established again ,Moreover , catastrophic failures may still

cause the loss of the entire agent. A failure of all places in

 (Fig. 1), for instance, is such a catastrophic. Failure

(assuming no recovery mechanism is in place). As no copy

of a1 is available any more, the agent a1 is lost and,

obviously, the agent execution can no longer proceed .In

other words, replication does not solve all problems. The

definition of non-blocking merely addresses single failures

per node as they cover most of the failures that occur in a

realistic environment. In the next section, we classify the

places in into iso-places and hetero – places

according to their properties [16-17].

An agent “a” can commit if all or some of the

surrogates commit depending on the commitment

condition Com (a). Each agent is also realized by using

the XA interface [18-20] which supports the two-phase

commitment protocol. Each surrogate issues a prepare

request to a server on receipt of a prepare message from

the agent. If prepare is successfully performed, the

surrogate sends a prepared message to the agent. Here, the

surrogate is referred to as committable. Otherwise, the

surrogate aborts after sending aborted to the agent. The

agent receives responses from the agents after sending

prepare to the surrogates. On receipt of the responses

from surrogates, the agent makes a decision on commit or

abort based on the commitment condition. In the atomic

condition, the agent sends commit only if prepared is

received from every surrogate. The agent sends abort to

all committable servers if aborted is received from at least

one surrogate. On receipt of abort, a committable

surrogate aborts. In the at-least-one commitment

condition, the agent sends commit to all committable

servers only if prepared is received from at least one

object server. Surrogate ai asks the other surrogate if they

had committed. Suppose the surrogate ai is faulty before

receiving prepared. Here, ai is abort able. If the surrogate

ai is recovered, ai unilaterally aborts (Fig.2).

Fig. 2. Conditional commitment [4].

Now, let us consider a mobile agent travelling through

n places on the network. Each place, and the agent itself, is

modeled as an abstract node as in [17]. We consider only

the standard attack phase described in [18] by malicious

places. On arrival at a malicious place, the mobile agent is

subject to an attack effort from the place. Because the

place is modeled as a node, it is reasonable to estimate the

attack effort by the number of instructions for the attack to

carry out, which would be linearly increasing with time.

On arrival at a non-malicious place, the effort would be

constant zero. Let the agent arrive at place i at time Ti, for

i=1,2...n. Then the effort of place i at total time / would be

described by the time-to-effort function [1, 2]:

Ei (t) = ki (t- Ti), (1)

where k is a constant.

We may call the constant ki the coefficient of malice.

The larger the ki, the more malicious place i is (ki =0 if

place i is non-malicious). Furthermore, let the agent stay

on place i for an amount of time tt, then there would be

breach to the agent if and only if the following breach

condition holds:

Ei (ti+Ti) > effort to next breach by place i (2)

i.e., kiti > effort to next breach by place i

As seen from [19-20], it is reasonable to assume

exponential distribution of the effort to next breach, so we

have the probability of breach at place i,

P (breach at place i) = P (breach at time ti+Ti) (3)

Journal of Information Systems and Telecommunication, Vol. 5, No. 1, January-March 2017 11

 = P (breach at effort kiti)

 = 1 – exp (-vkiti) , v is a constant

 = 1 – exp (- iti) , i = vki

We may call v the coefficient of vulnerability of the

agent. The higher the v, the higher is the probability of

breach to the agent. Therefore, the agent security E would

be the probability of no breach at all places, i.e.

1

n

i i

i

t

E e

 (4)

Suppose that we can estimate the coefficients of

malice ki’s for places based on trust records of places, and

also estimate the coefficient of vulnerability v of the agent

based on testing and experiments, then we can calculate

the desired time limits Ti‘s to achieve a certain level of

security E. Conversely, if users specify some task must be

carried out on a particular place for a fixed period of time,

we can calculate the agent security E for the users based

on the coefficients of malice and vulnerability estimates.

4. The Fault Tolerant Execution Model and

Evaluation

For a large network with a large number of node and

place, suppose that agents can be generated from every

place on networks, provide mobile agents an execution

environment. Initially, there are a pile of tasks generated

in the network .Then a pile of agents, whose number is

equal to that of the tasks, is generated. Each task is carried

by an agent .Those agents wander among places in the

network to search for their destinations. At each place,

agents have local information about the error rate of each

adjoin link, but they do not have global knowledge on the

state of the network. The sequence of places visited by the

agent compose the agent's itinerary. Agents' itineraries

can be either static or dynamic. A static itinerary is

entirely defined at the source and does not change during

the agent traveling; whereas a dynamic itinerary is subject

to modifications by the agent during its execution [21].

Since mobile agents are capable of sensing the

execution environment and reacting autonomously to

changes [22], a dynamic itinerary on the fly .Let denote

the i-th place in the itinerary and P (i) denote the set

consisted by the neighbor places of .The number of

neighbor places in set P (i) is denoted by , i.e., the

connectivity degree of place . Once an agent reaches a

place it executes locally. After completed its execution,

the agent selects a place from P (i) to move to. Suppose

that there is an error rate for each candidate direction,

mobile agents will prefer a route with a low error rate to

shun faults. The selected place in P (i) is denoted by
 .

In case that a failure takes place on
 , the agent is

blocked and has to return to the previous place . Then, it

will reselect another neighbor place from P (i) and move

to. The j-th selected place in P(i) is denoted
 . An

agent is supposed will not jump to the same neighbor

place twice since in a general way a failure place will not

recover in a very short time. This process will continue

until the agent successfully enters a place and completes

its execution there. The final visited place in P (i) is

denoted by .

Communication between consecutive nodes and

 is based on transactional message queues, shown as

shaded rectangles in Fig. 1. At each node, a place

retrieves the agent from its input queue, executes the

agent, and places the resulting agent in the input queues

of the next node's places as one transaction. A place
can only commit the distributed transaction when it is

elected by the places in , when it receives a majority

of votes. Rothermel uses a 2-phase commit protocol [23]

to commit the transactions, the election protocol thereby

acting as a resource manager to the transaction manager.

Modeling reliable mobile agent execution based on two

different, interfering problems leads to a more complex

solution than ours. In addition, understanding the

weaknesses of such a solution is difficult and tedious. Our

solution, however, is specified in terms of a single

problem, the consensus problem, an intensively studied

problem with well-understood solutions.

In Rothermel's model, the execution of the agent as

well as the forwarding of the agent from node to

run as a transaction. Our model, in contrast, clearly

decouples the mechanisms that provide fault tolerance

from the execution properties of the agent operations. In

particular, the agent operations do not need to run as a

transaction. If they do, they have their own transaction

manager.

In an asynchronous distributed system, there are no

bounds on transmission delays of messages or no relative

process speeds. Therefore, when a mobile agent is

blocked by reason of a failure in an asynchronous

distributed system, the agent owner cannot correctly

determine whether the agent has failed or is merely slow

[24-28]. Therefore, the reliability of agents' execution is

paramount for measuring the network performance. We

treat this problem as a probability problem using the

behavior of mobile.

Agents to build a probability estimation on the number

of places an agent can visit. Let denote the number of

places selected by an agent in set P(i). The event indicates

that the agent cannot enter the place

 in set P (i), then

the parameter p measures the incidence of failure in the

network. The average number of selected places in set P

(i), denoted by M (Si), and satisfies.

 2

iM S (1 ((1))) / (1)))id
p p p p

 (5)

i=1,2… and j=1,2,…….

From Fig.3, it is easy to see that the average number

of places an agent will selected in a neighbor place set is

an increase function on both error rate p and the number

of neighboring places . Furthermore, if the time cost for

passing a link approximates to a constant k, we have

estimate the average time consumption for mobile agents

entering a place in set P (i).

Hamidi & Parvini, A Model for Mobile Code Computing Paradigms in Computer Networks

12

Fig. 3. The Changes of M (Si) over p and

By the assumption that the time consumption for an

agent passing a link is q, the time consumption of the

period that an agent moves to a down place and returns to

the previous place equals to 2q. Hence, Agents' life

expectancy satisfies.

[] ((1) / ((1)(1)) / ((1 ((1) / (1)))d dM v q q q p p q q (6)

Fig. 4.The Changes of M (vi) over P and d

Fig. 4. shows the changes of agents' average life

expectancy. It is easy to see that the average life

expectancy is an increase function on both the error rate

and the network connectivity. In particular, it is a convex

function on the parameter d and a concave function on the

parameter p.

5. Results

In this experiment, we change the number of nodes

from 2 to 30 and use one mobile agent. The result is

shown in Fig. 5(a). We observe that both the execution

time and the energy consumption using either computing

model grow as the number of nodes increases. But the

execution time of the client/server model grows much

faster than the mobile-agent-based model. This is because

as the number of nodes increases, the server has to deal

with more connections requested by the clients at the

same time, which elongates the execution time. On the

other hand, the mobile agent model is less influenced by

the number of nodes because there are far fewer

connections at one time for the mobile agent model. The

figure also shows that the client/server model performs a

little better than the mobile agent model from both the

execution time and energy consumption perspectives.

This happens when the mobile agent model needs more

connections than the client/server model in order to send

and receive mobile agents. It also happens when the

overhead of the mobile agent surpasses the overhead of

the client/ server model.

In this experiment, we fix the node number at 100 but

change the number of mobile agents from 1 to 50.

Without loss of generality, we assume each agent

migrates the same number of nodes. We expect a constant

profile from the client/server model since it is irrelevant

to the number of mobile agents. We can see from Fig. 5(b)

that the execution time of the mobile agent model is

always less than that of the client/server model because

the node number is large. Interestingly, the execution time

of the mobile agent model decreases as the number of

mobile agents increases and reaches the lowest point

when there are five mobile agents. Then, the execution

time begins to climb. This is because more mobile agents

Journal of Information Systems and Telecommunication, Vol. 5, No. 1, January-March 2017 13

will reduce the number of nodes each agent migrates, thus

reducing the execution time. But more mobile agents also

cause more connections and more overheads. As the

number of mobile agents increases, the energy

consumption also increases in linear and the mobile agent

model actually consumes more energy when m>15.

Fig. 5. (a) Effect of the mobile agent size (s). Execution time. (b) Effect

of the overhead ratio and Execution time.

Access time from time when the application program

starts to time when the application program ends, is

measured for Agents and client-server model. Fig.6 shows

the access time for number of object servers. The mobile

agent‘s shows that Aglets classes are not loaded when an

agent A arrives at an object server. Here, the agent can be

performed after mobile agents are loaded. On the other

hand, the mobile agent‘s with replication means that an

agent manipulates objects in each object server where

mobile agents are already loaded, i.e. the agent comes to

the object server after other agents have visited on the

object server. As shown in Fig.6, the client-server model

is faster than the transactional agent. However, the

transactional agent is faster than the client-server model if

object servers are frequently manipulated, i.e. mobile

agents with replication are a priori loaded.

Fig. 6. Client server vs. agent.

6. Conclusion

To achieve reliable in the context of mobile codes, we

first have specified reliable mobile agent execution in

terms of two properties: non-blocking and once execution.

Replication overcomes the blocking problem. This paper

shows how the present approach to reliable mobile agent

execution can be used to achieve non-blocking mobile

agent execution. The use of mobile agent, however, is

critical and requires reliability in regard to mobile agent

failures that may lead to bad response time and hence the

availability of the system may lost. In this paper, a fault

tolerance technology is proposed in order that the system

autonomously detect and recover the fault of the mobile

agent due to a failure in a transmission link. The key idea

is the use of stochastic regularities of mobile agent's

behavior-all the mobile agents in the network as a whole

can be stochastically characterized though a single mobile

agent may act randomly. In this paper, we proposed a

reliable execution model of mobile agents and analyzed

the life expectancy, including the average time consuming

of mobile agents between two places, the average number

of places agents will visit, and the agents' life expectancy.

Hamidi & Parvini, A Model for Mobile Code Computing Paradigms in Computer Networks

14

References
[1] H. Hamidi and K. Mohammadi, ―Evaluation of Fault

Tolerant Mobile Agents in Distributed Systems,

―International Journal of Intelligent Information

Technologies (IJIIT 5(1)), pp.43-60, Janauary-March 2009.

[2] H. Hamidi and A. Vafaei, "Evaluation of Security and

Fault-Tolerance in Mobile Agents," Proc.Of the 5th IEEE

Conf. on Wireless & Optical Communications Networks

(WOCN2008), May 5, 6 and 7, 2008.

[3] H. Hamidi and K. Mohammadi, "Modeling and Evaluation

of Fault Tolerant Mobile Agents in Distributed Systems,"

Proc. Of the 2th IEEE Conf. on Wireless & Optical

Communications Networks (WOCN2005), pp. 91-95,

March 2005.

[4] S. Pleisch and A. Schiper, "Modeling Fault-Tolerant

Mobile Agent Execution as a Sequence of Agree

Problems," Proc. of the 19th IEEE Symp. on Reliable

Distributed Systems, pp. 11-20,2000.

[5] S. Pleisch and A. Schiper, "FATOMAS - A Fault-Tolerant

Mobile Agent System Based on the Agent-Dependent Ap-

proach," Proc. 2001 Int'l Conf on Dependable Systems and

networks, pp.215-224, 2001.

[6] M. Strasser and K. Rothermel, "System Mechanism for

Partial Rollback of Mobile Agent Execution," Proc. 20th

In!'l Conf on Distributed Computing Systems, 2000.

[7] T. Park, I. Byun, H. Kim and H.Y. Yeom, "The

Performance of Checkpointing and Replication Schemes

for Fault Tolerant Mobile Agent Systemss ," Proc. 21th

IEEE Symp. On Reliable Distributed Systems, 2002.

[8] M. Izatt, P. Chan, and T. Brecht. Ajents: Towards an

Environment for Parallel, Distributed and Mobile Java

Applications. In Proc. ACM 1999 Conference on Java

Grande, pages 15-24, June 1999.

[9] A. S. Tanenbaum, "Distributed Operating Systems",

prentice Hall, Inc, 1995.

[10] H.W. Chan, K.M. Wong, R. Lyu ―Design, Implementation,

and Experimentation on Mobile Agent Security for

Electronic Commerce Application,‖ Distributed systems, s.

Mullender,ed., second ed., pp. 199-216, Reading, Mass.:

Addison-wesley, 1993.

[11] X. Defago, A. schiper,and N. sergent, ―semi-passive

Replication,‖proc. 17th IEEE symp. Reliable Distributed

system (SRDS ‗98), pp. 43-50, oct. 1998.

[12] M.J. Fischer, N.A. Lynch and M.S. paterson,

―Impossibility of Distributed consensus with one Faulty

process,‖ Proc. second ACM SIGACT-SIGMOD symp.

Principles of Database system, pp. 17-24, Mar.1983.

[13] M. S. Greenberg, J. C. Byington, and D. G. Harper.

―Mobile Agents and Security‖. In Volume 367, IEEE

Communications Magazine. IEEE Press, July 1998.

[14] C. F. Tschudin. ―Mobile Agent Security‖. In M. Klusch,

Intelligent Information Agents. Forthcoming LNCS.

http://www.docs.uu.se/~tschudin/pub/cft-1999-iia.ps.gz, 1999.

[15] C. Ghezzi, G.Vigna. ―Mobile Code Paradigms and

Technologies: A Case Study‖. In Kurt Rothermet, Radu

Popescu-Zeletin, editors, Mobile Agents, First

International Workshop, MA‘97, Berlin, Germany, April

1997, Proceedings, LNCS 1219, p. 39-49. Springer, 1997.

[16] A. Fuggetta, G. P.Picco, & G.Vigna, Understanding code

mobility. IEEE Transactions on Software Engineering,

24(5). pp. 342–361, 1998.

[17] W. Stallings. Cryptography and Network Security,

Principles and Practice. Prentice Hall, 2nd edition, 1999.

[18] T. Sander and C. F. Tschudin. ―Protecting Mobile Agents

against Malicious Hosts‖. In Giovanni Vigna, editor,

Mobile Agents and Security, LNCS 1419, p. 44-60.

Springer, 1998.

[19] F. Hohl. ―Time Limited Blackbox Security: Protecting

Mobile Agents from Mali cious Hosts‖. In Giovanni Vigna,

editor, Mobile Agents and Security, LNCS 1419, p. 92-113.

Springer, 1998.

[20] M.K. Aguilera, w. chen, and s. Toueg, ―Failure Detection

and consensus in the crash-Recovery Model,‖ Distributed

computing,vol. 13,no. 2,pp. 99-125,2000.

[21] R. A. Sahner, K. S. Trivedi, and A. Puliafito. Performance

and Reliablity Analysis of Computer Systems. Kluwer

Academic Publishers, Boston, 1996.

[22] S. Pleisch and A. Schiper, ―Fault-Tolerant Mobile Agent

Execution," IEEE TRANSACTIONS ON COMPUTERS,

VOL. 52, NO .2, Feb 2003.

[23] M. Strasser and K. Rothermel, "System Mechanism for

Partial Rollback of Mobile Agent Execution," Proc. 20th

In!'l Conf on Distributed Computing Systems, 2000.

[24] H. Hamidi, ―Modeling Fault Tolerant and Secure Mobile

Agent Execution in Distributed Systems, "International

Journal of Intelligent Information Technologies (IJIIT

2(1)), pp.21-36, 2006.

[25] H. Hamidi and A.Vafaei, ―Evaluation and Check pointing

of Fault Tolerant Mobile Agents Execution in Distributed

Systems,‖ Journal of Networks (Academy Publisher), VOL.

5, NO. 7. July 2010.

[26] A. Vafaei, H. Hamidi., S.A. Monadjemi. ―A Framework

for Fault Tolerance Techniques in the Analysis and

Evaluation of Computing Systems‖ International Journal of

Innovative Computing, Information and Control (IJICIC),

Vol.8, No.7, July 2012.

[27] S. Bimonte, L. Sautot, L. Journaux, & B. Faivre,

Multidimensional Model Design using Data Mining: A Rapid

Prototyping Methodology. International Journal of Data

Warehousing and Mining (IJDWM), 13(1), pp.1-35. 2017.

[28] D. Chevers, A. Mills, E. Duggan, S. Moore. ―An

Evaluation of Software Development Practices among

Small Firms in Developing Countries: A Test of a

Simplified Software Process Improvement Model.‖ Journal

of Global Information Management, 24(3), pp. 45-70. 2016.

[29] C. Esposito, & M. Ficco, ―Recent Developments on

Security and Reliability in Large-Scale Data Processing

with MapReduce.‖ International Journal of Data

Warehousing and Mining (IJDWM), 12(1), pp. 49-68. 2016.

[30] F. Gharagozlou, , G. A. Mazloumi, , A. Nahvi, Nasrabadi,

A. M., Foroushani, A. R., Kheradmand, A.A, Ashouri, M.,

Samavati, M, Detecting Driver Mental Fatigue Based on

EEG Alpha Power Changes during Simulated Driving,

Iranian Journal of Public Health 2015.

[31] H. Hamidi, ―A Combined Fuzzy Method for Evaluating

Criteria in Enterprise Resource Planning Implementation.‖

International Journal of Intelligent Information

Technologies (IJIIT), 12(2), pp.25-52. 2016.

[32] Hamidi, H. ―A Model for Impact of Organizational Project

Benefits Management and its Impact on End User‖,

JOEUC, Volume 29, Issue 1, pp. 50-64, 2017.

[33] R. D. Johnson, Y.Li, & J. H. Dulebohn, ―Unsuccessful

Performance and Future Computer Self-Efficacy

Estimations: Attributions and Generalization to Other

Software Applications.‖ Journal of Organizational and End

User Computing, 28(1), Pp.1-14. 2016.

Journal of Information Systems and Telecommunication, Vol. 5, No. 1, January-March 2017 15

[34] A. S. Kakar, ―A User-Centric Typology of Information

System Requirements.‖ JOEUC, 28(1), pp. 32-55. 2016.

[35] S. Kumar, ―Performance Evaluation of Novel AMDF-

Based Pitch Detection Scheme,‖ ETRI Journal, vol. 38, no.

3, pp. 425-434, 2016.

[36] Y. Liu, C.Tan, & J. Sutanto, ―Selective Attention to

Commercial Information Displays in Globally Available

Mobile Application.‖ Journal of Global Information

Management, 24(2), pp.18-38. 2016.

[37] S.A. Monadjemi, A.Vafaei, H.Hamidi, ―Analysis and

Evaluation of a New Algorithm Based Fault Tolerance for

Computing Systems.‖ International Journal of Grid and High

Performance Computing (IJGHPC), 4(1), pp. 37-51, 2012.

[38] S.A. Monadjemi, A.Vafaei, H.Hamidi. ―ANALYSIS AND

DESIGN OF AN ABFT AND PARITY-CHECKING

TECHNIQUE IN HIGH PERFORMANCE COMPUTING

SYSTEMS‖ Journal of Circuits, Systems, and Computers

(JCSC), JCSC Volume 21 Number 3. 2012.

[39] A. Safdar, K. DoHyeun, ―Enhanced power control model

based on hybrid prediction and preprocessing/post-

processing.‖ Journal of Intelligent & Fuzzy Systems, vol.

30, no. 6, pp. 3399-3410. 2016.

[40] B. Shadloo, A. Motevalian, V. Rahimi-movaghar, M.

Amin-Esmaeili, V. Sharifi, A. Hajebi, R. Radgoodarzi, M.

Hefazi, Rahimi-Movaghar, ―Psychiatric Disorders Are

Associated with an Increased Risk of Injuries: Data from

the Iranian Mental Health Survey.‖ Iranian Journal of

Public Health 45(5): pp. 623-635. 2016.

[41] J. Wu, F. Ding, M. Xu, Z. Mo, & A. Jin, ―Investigating the

Determinants of Decision-Making on Adoption of Public

Cloud Computing in E-government.‖ JGIM, 24(3), pp.71-

89. 2016.

[42] X. Ye, T. Sakurai, ―Robust Similarity Measure for Spectral

Clustering Based on Shared Neighbors,‖ ETRI Journal, vol.

38, no. 3, pp. 540-550. 2016.

Hodjat Hamidi born 1978, in shazand Arak, Iran, He got his Ph.D
in computer engineering. His main research interest areas are
Information Technology, Fault-Tolerant systems and applications
and reliable and secure distributed systems and e- commerce.
Since 2013 he has been a faculty member at the IT group of K. N.
Toosi University of Technology, Tehran Iran. Information
Technology Engineering Group, Department of Industrial
Engineering, K. N. Toosi University of Technology.

Maryam Parvini is a master student of Information Technology
Engineering at K. N. Toosi University of Technology. Her research
interests include Machine learning, Knowledge Discovery and
Data Mining and Customer Relationship Management.

