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Abstract 
Nowadays, routers are the main backbone of computer networks specifically the Internet. Moreover, the need for high-

performance and high-speed routers has become a fundamental issue due to significant growth of information exchange 

through the Internet and intranets. On the other hand, flexibility and configurability behind the open-source routers has 

extended their usage via the networks. Furthermore, after assigning the last remaining IPv4 address block in 2011, 

development and improvement of IPv6-enabled routers especially the open-sources has become one of the first priorities 

for network programmers and researchers. In IPv6 because of its 128-bits address space compared to 32-bits in IPv4, 

much more space and time are required to be stored and searched that might cause a speed bottleneck in lookup of routing 

tables. Therefore, in this paper, Bird as an example of existing open source router which supports both IPv4 and IPv6 

addresses is selected and Bloom-Bird (our improved version of Bird) is proposed which uses an extra stage for its IP 

lookups using Bloom filter to accelerate IP lookup mechanism. Based on the best of our knowledge this is the first 

application of Bloom filter on Bird software router. Moreover, false positive errors are handled in an acceptable rate 

because Bloom-Bird scales its Bloom filter capacity. The Bloom-Bird using real-world IP prefixes and huge number of 

inserted prefixes into its internal FIB (Forwarding Information Base), shows up to 61% and 56% speedup for IPv4 and 

IPv6 lookups over standard Bird, respectively. Moreover, using manually generated prefix sets in the best case, up to 93% 

speedup is gained. 
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1. Introduction 

The need for high-performance and high-speed routers 

has become a fundamental issue due to significant growth 

of information exchange through Internet and intranets. 

Due to adoption of Class-less Inter-domain Routing 

(CIDR) method, routers need to find best match between 

various prefix lengths that may differ from lengths 1 to 

128 based on what version of IP and what prefix is used. 

This process of finding matching IPs is time consuming 

and a lot of hardware (e.g. TCAM and SRAM) and 

algorithmic approaches (e.g. binary searches) are 

proposed in the literature as will be discussed further in 

the related work section. 

On the other hand, modern IP router solutions can be 

classified into three main categories, hardware routers, 

software routers, and programmable network processors 

(NPs) [1]. PC-based software routers have created 

reasonable networking platforms with easy development 

and programmability features. These features are the most 

important in comparison with hardware routers.  Current 

software routers reported forwarding up to 40 Gbits/sec 

traffic on a single commodity personal computer [2]. On 

the other hand, existence of open-source software routers 

has brought the opportunity to study and change their 

codes to make the better routers based on researchers 

needs. Bird [3], Quagga [4], and Xorp [5] are examples of 

such open-source routers. Among them, the Bird is 

selected to implement a Bloom filter (BF) [6] on its 

internal FIB (Forwarding Information Base) in which all 

routing tables are based on this data-structure. Since 

searching in a FIB which stores a huge number of IP 

prefixes can cause speed bottleneck, we have accelerated 

it using an extra stage lookup on Bloom filter data-

structure. Results show that BF as an extra stage on Bird 

IP lookups (i.e. Bloom-Bird) makes it up to 93% faster 

than its standard hashing mechanism for searching big 

FIBs in the best case. Also results indicate that there is 

even speedup when result of searching a particular prefix 

in the FIB is positive because of hash optimizations made 

in the Bloom-Bird. 

The main concern in this paper is to show how a 

Bloom filter can help an open-source software router to 

speedup searches when number of inserted nodes and 
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prefixes becomes huge. In order to have a fair comparison 

between two versions of Bird (i.e. standard Bird and 

Bloom-Bird), basic rules and structures of standard Bird 

is not changed. For example maximum length of Bird’s 

main hash is 16-bits, so it is the same for Bloom-Bird too. 

The Bloom-Bird includes a Bloom filter array (thus a 

space overhead) to speedup simple searches for a given IP 

and length and also Longest Prefix Matching (LPM) 

lookups. The array can scale its capacity; therefore, False 

Positive (FP) errors are handled in an acceptable rate. 

The main contribution of the paper is proposal of 

Bloom-Bird router to enhance the performance of Bird 

open-source router that utilizes a Bloom filter for both 

IPv4 and IPv6 addresses in its architecture. 

The rest of the paper is organized as follows. Section 

2 presents related work of Bloom filter and its 

applications in network processing. Section 3, contains 

two subsections, which first, is a brief introduction to FIB 

data structure of Bird and how Bloom-Bird is 

implemented conceptually, and in the latter subsection the 

pseudo-codes of implemented approach is presented. 

Section 4 contains four subsections, which the first two 

sub-sections are dedicated to IPv4 prefix sets and the last 

two sub-sections are based on IPv6 prefix sets. Therefore, 

in Section 4, the first sub-section presents an introduction 

of the scenario in order to evaluate Bloom-Bird and 

standard Bird using IPv4 prefixes, and in the second 

subsection, results of Bloom-Bird evaluation are 

presented; third and fourth sub-sections are similar to 

previous sub-sections but they are based on IPv6 prefix 

sets. Finally, section 5 concludes the paper. 

2. Related Work 

Bloom filter (BF) is a randomized and probabilistic 

data-structure proposed by Burton Bloom in the 1970s [6]. 

BF normally consists of a bit-array representing existence 

of inserted elements. By checking k hash functions and 

getting negative answer, it can be determined that the 

element is not inserted certainly. However some FP (False 

Positive) may occur. Which means BF may express some 

elements exist by mistake so it needs to check main hash 

table to make sure about positive answers. Bit-array of BF 

can reside in an on-chip memory by a hardware 

implementation to do k hash functions checks in parallel. 

The main advantage of BF structure is Space and Time 

efficiency in which consumes much less space than 

ordinary data structures because of its potential collisions 

and requires much less and more predictable time to 

query a member. 

A lot of variants of BFs are proposed such that more 

than 20 variants of BF are presented in the literature [7]. 

Each and every one of them is used for a special manner. 

For example, standard Bloom filter (SBF) is used in order 

to check if a specific element is present or not. An 

important draw-back of SBF is that insertions cannot be 

undone. Counting Bloom filter (CBF) [8] and later, 

Deletable BF (DlBF) [9] proposed in order to gain the 

removability in BF. In CBF each bit in the Bloom array is 

replaced by a counter. Each insertion, increments counters 

related to k hash functions. Obviously, each deletion 

decrements related counters. Another variant of BF which 

supports deletions as mentioned is DlBF. It splits BF 

array into multiple regions and tracks regions of BF array 

in which collisions occur. A small fraction of bit-array is 

used in order to determine related area is collision-free or 

not. If bits are located in a collision-free region, then the bit 

can be reset safely, otherwise it will not be safe to delete. 

Therefore, some bits may not reset if they are located in a 

collisionary region. CBF is selected for Bloom-Bird 

because of its simplicity and consistency over deletions 

instead of DlBF. DlBF would be a good option if BF is 

going to be implemented in an on-chip memory. 

BFs are used in various applications including 

network processing as discussed in [10] that can be 

classified into four major categories: Resource routing, 

Packet routing, Measurement, and Collaborating in 

overlay and peer-to-peer networks. Moreover, “IP Route 

lookup” and “Packet Classification” are important 

applications of BF in the network processing (e.g. [11]). 

Longest Prefix matching (LPM) or Best Matching Prefix 

(BMP) that can be classified into IP route lookup category 

is also an interesting area of BF application. There are a 

lot of proposed algorithms in order to speedup BMP in 

the literature. In [12] authors have classified BMP 

algorithms into “Trie-based algorithms”, “Binary search 

on prefix values”, and “Binary search on prefix lengths”. 

“A Trie is a tree-based data-structure allowing 

organization of prefixes on a digital basis using the bits of 

prefixes to direct the branching” [12]. Trie-based schemes 

do a linear search on prefix length because they only 

compare one bit at a time. The worst case of memory 

accesses is W when prefix length is W. However, binary 

search algorithms on prefix values are proportional to 

log2N which N is number of prefixes. Binary search on 

prefix lengths are proportional to log2W. The first BF 

application for LPM proposed in [13] which parallel 

check on on-chip memory is performed to accelerate 

lookups before checking slower off-chip memory. 

Although employing Bloom filters as an extra stage to 

accelerate IP lookups is well studied by Dharmapurikar et 

al. [13], Bloom-Bird is different because it is completely 

independent of specialized hardware implementation and 

it runs on commodity PC hardware. Therefore, number of 

hashes is kept as low as possible and the hash probes can 

be run sequentially and BF can reside in slow memory 

without loss of efficiency. Moreover, BF on Bloom-Bird 

helps to accelerate (prefix, length) pair searches in the 

FIB data structure by ignoring long chains of linked lists 

of the main hash table. In order to have a fair comparison, 

basic rules and chain orders of Bird are not modified and 

modifications are as low as possible. 

Furthermore, because IPv6 uses more bits to represent 

IP addresses (128-bit) compared to IPv4 (32-bit), 

therefore, it is expected that number of IPv6 prefixes 
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becomes much bigger than current IPv4 prefixes in a near 

future. Therefore, trie-based schemes will become 

inefficient. Therefore, multi-bit tries [14] are proposed 

which compare more than one bit at a time at the cost of 

space overhead. However, whether Binary search or trie-

based lookups is used, it is shown that Bloom filters can 

accelerate IPv6 lookups too [15], [16]. Nevertheless, the 

main advantages of our work over the two 

aforementioned approaches accelerating IPv6 lookups 

using Bloom filters is that they are based on a special 

hardware implementation but Bloom-Bird runs 

completely on commodity PC hardware. To assert again, 

we didn’t change the main hash of standard Bird into 

better lookup approaches like trie-based schemes or 

binary searches, in order to have a fair comparison 

between standard Bird and Bloom-Bird.  

The following section explains Bird open source 

router fundamental data-structures, pseudo-codes of them 

and how are they are improved in Bloom-Bird. 

3. Bloom-Bird: A Better Bird 

“The Bird project aims to develop a fully functional 

dynamic IP routing daemon primarily targeted on (but not 

limited to) Linux, FreeBSD and other UNIX-like systems” 

[3]. It supports latest versions of routing protocols such as 

BGP, RIP and OSPF. It also supports both IPv4 and IPv6 

addresses and a simple command line interface to 

configure the router. There is a fundamental data-

structure called FIB (Forwarding Information Base) in the 

Bird which routing tables are based on it. This data-

structure stores IP prefixes and length of them. Searching 

in a FIB, where huge number of prefixes is stored can 

become a speed bottleneck, which can be faster using a 

CBF (Counting Bloom Filter) as will be presented. 

Storing in FIB of Bird router is a two stage mechanism. In 

the first stage, an order-bit hash is calculated based on 

prefix value to find bucket index of main hash table 

(order can be varied from 10 to 16). In the next stage, 

there is a chain of nodes in linked list structure which may 

become long due to huge number of nodes. Therefore, a 

BF can help to reduce of traversing these long chains for 

missing nodes which results in accelerating the IP lookup 

mechanism. Nodes are allocated in each chain by Bird 

Slab Allocator. The implementation of the memory 

allocator is based on what Bonwick proposed [17] that 

makes linked list traversing reasonably fast. 

To be more specific, there are three important 

functions related to FIBs in the Bird named fib_get(), 

fib_find(), fib_route() which are responsible for adding, 

searching and longest prefix matching, respectively. Each 

FIB structure in Bird starts with a default 10-bit hash 

order (i.e. 2
10

) and increases its hash table size when the 

number of prefixes increases. This expansion will stop at 

16-bit; therefore, chain lengths start to become larger. 

Implemented BF helps the main hash table when this 

situation happens to prevent searching in this large FIB 

chains when an IP prefix cannot be found. 

In the following subsection, the way Bloom-Bird 

implemented is presented conceptually. In the next 

subsection, the pseudo-codes of implemented approach 

are discussed. 

3.1 Implementation Concepts 

Bird uses dynamic hashing size to store prefixes 

which increases when number of inserted prefixes 

becomes huge. It starts from 10-bit and it expands until 

16-bit order and never grows afterwards. It increments the 

order by 2 when the capacity limit is reached (e.g. it 

expands into 12-bit when 10-bit limit is reached). In order 

to have a fair comparison between standard Bird and 

Bloom-Bird, these rules are not changed. Therefore, 

Bloom-Bird includes an extra BF array in each FIB to 

help it responding faster when it is possible. 

Hashing mechanism in the BF of Bloom-Bird is 

inspired by the main hash table of the standard Bird. If 

number of entries increases, Bloom-Bird changes size and 

order of BF array similar to the main hash table approach. 

Bloom-Bird starts with 18-bit order and it increases to 20-

bit order if the capacity limit is reached. This expansion 

continues until 32-bit and it never grows afterwards. For 

simplicity, this expansion of BF array is not included in 

the pseudo-codes in the next subsection. Because of 32-

bit order limit, capacity of BF array is limited to 32-bit 

when an acceptable FP error rate is expected. As the 

results will show, Bloom-Bird shows at most 15% FP 

error rate which is fairly good based on Eq. “(1)” in 

section 5 and tested elements. 

In “Fig. 1” a simple Bird’s FIB hashing table is 

depicted. In the aforementioned Figure, the order can be 

varied from 10 to 16 as mentioned before. Basic fib_find() 

function that searches for a given prefix and length in a 

FIB is shown which uses ipa_hash() function to determine 

which bucket in main hash table should be used. Main 

hash array is an order-bit array of fib_node type. 

Afterwards, the node will be inserted into a new free 

location in the linked lists chain.  
 

 

Fig. 1. FIB hashing architecture of standard Bird [3]. 

In “Fig. 2” the way that BF is implemented in the FIB 

is depicted. The fib_find() function checks BF for given 

prefix firstly. If BF confirms the existence of the prefix, 
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then the main hash table will be checked in order to 

determine pointer address of found node or a FP error may 

occur. On the other hand, (and more importantly) if BF 

returns negative answer, checking main hash table will be 

ignored. Therefore, the main advantage of BF is the latter 

part in which checking main hash table and maybe 

traversing long chains of linked lists can be avoided. 
 

 

Fig. 2. FIB hashing architecture of Bloom-Bird. 

3.2 Implementation Codes 

The pseudo-code of fib_find() in the standard Bird (as 

discussed), is shown as SB_fib_find() function (in order 

to distinguish between standard Bird and Bloom-Bird 

functions, SB_ is prepended to Bird functions and BB_ is 

prepended to Bloom-Bird functions). In the first line, e 

variable points to the selected bucket which is traversed in 

order to find given prefix. In the second and third lines, 

the bucket chain is traversed to find the requested node. 

Two situations may happen after this loop. The loop may 

find the node, and then last line returns the node. 

Otherwise, traversing linked list may end with a null 

pointer; therefore, fourth line returns a null pointer 

indicating that the node cannot be found. 
 

Psuedo-Code1.   SB_fib_find() 
SB_fib_find(fib, prefix, length) 

1. e = fib_table[ipa_hash(prefix)] 

2. while((not empty e) AND (not found e)) 

3.   e = e->next 

4. return e 
 

In the Bloom-Bird version of this function, in the first 

line, BF array and its hashing mechanism is used in order 

to ignore prefixes that do not exist as discussed earlier. 

The function is changed as BB_fib_find(). Three first 

lines are dedicated to BF search method for a given prefix. 

There are k hash probes in order to search BF. In each 

step of the loop, if a location of the BF array represents an 

empty location then the search returns false answer 

immediately (i.e. NULL pointer). As it is shown in 

second line, k independent hash functions are used for BF 

to check the array locations. These hash functions are also 

depicted in “Fig. 2” as bloom_hashi(). 

 

 

 

Psuedo-Code 2.     BB_fib_find() 
BB_fib_find(fib, prefix, length) 

1. for(i=1 to k) 

2.   if(filter[bloom_hashi(prefix)] is 

empty) 

3.     return NULL 

4. e = fib_table[hash(prefix)] 

5. while((not empty e) AND (not found e)) 

6.   e = e->next 

7. return e  
 

Bird uses very simple longest prefix matching (LPM) 

mechanism that starts from a given length and decrements it 

until longest prefix match is found or returns a NULL pointer. 

The pseudo-code is shown as SB_fib_route() function. 

Since fib_route() uses fib_find() as its main function 

to determine existence of the prefixes, BF can help 

fib_route() very effectively because BF causes no false 

negative errors and it does not need to go through the 

main hash chains for lengths that cannot be found. 

Therefore, there is no need to change anything in the 

fib_route() function and BF helps LPM indirectly. 

Although there are better solutions like binary searches on 

prefix values and lengths as mentioned in related work 

section, Bird’s LPM algorithm is not changed in order to 

show BF performance over standard Bird. 
 

Psuedo-Code 3.     SB_fib_route() 
SB_fib_route(fib, prefix, length)  

1. while (length ≥ 0) 

2.   if(fib_find(fib, prefix, length)) 

3.     return found node 

4.   else 

5.     length = length – 1 

6. return NULL 
 

The last important function is fib_get() which searches 

for given prefix and length and if does not exist, it adds 

the prefix into the FIB. The pseudo-code of this function 

is presented as SB_fib_get() function. It is shown in the 

first line that the fib_get() uses fib_find() function as its 

searching mechanism. If it finds the node then the found 

node pointer will be returned. Otherwise the node will be 

inserted into selected bucket of the hash table. 
 

Psuedo-Code 4.   SB_fib_get() 
SB_fib_get(fib, prefix, length)  

1. if(fib_find(fib, prefix, length)) 

2.   return found node 

3. else 

4.   Go down through hash chains 

5.   And add new node 
 

To check existence of nodes in this function also BF 

can help through fib_find() when a node does not exist. 

Therefore, in the first line, BF is checked before its main 

hash table and when a node is not inserted before, BF 

counters should be incremented (because CBF is used). 

Therefore, only one change is needed in this function. 

This function is been shown as BB_fib_get() function. 
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Psuedo-Code 5.    BB_fib_get() 
BB_fib_get(fib, prefix, length)  

1. if(fib_find(fib, prefix, length)) 

2.   return found node 

3. else 

4.   Go down through hash chains 

5.   And add new node 

6.   for(i=1 to k) 

7.     filter[bloom_hashi(prefix)] += 1 
 

Extra lines 6 and 7 of BB_fib_get() function are 

responsible for updating BF array due to newly added 

node. This does not count as overhead since hash 

functions are optimized using bit-wise operations and 

simplifications compared to standard hash of Bird.  

There are two different types of hash functions used in 

the Bloom-Bird. First type is much like Bird’s original hash 

function which returns a 16-bit hash based on prefix value 

but optimized using bit-wise operations (ipa_hash() 

function). Second type hash functions are used for BF 

which has much less collisions than Bird’s original hash 

function. These second type hash functions return a variety 

of bit sizes based on BF array length. Number of BF hash 

functions (k) is set to the lowest possible value. Two 

possible minimum values of k has been tested (i.e. k=3 and 

k=2). In which k=3 tests showed a little speed overhead 

compared to k=2 tests while the FP error rate was almost 

the same. Therefore, the k=2 value is selected for Bloom-

Bird to compare its performance with standard Bird.  

Therefore, in the Bloom-Bird, k is constant and is set 

to 2 because the loop of checking k hash functions 

becomes speed bottleneck for bigger k.  

In next Section the scenario and prefix sets in order to 

compare Bloom-Bird and standard Bird and evaluation 

are presented and discussed. 

4. Evaluation of Bloom-Bird and Results 

4.1 IPv4 Scenario 

In order to evaluate standard Bird and Bloom-Bird 

three real IPv4 prefix sets from [18] are gathered from 

years 2008, 2010 and 2013 sorted by date which latest 

and more updated one contains more than 482 thousands 

unique IPv4 prefixes as “Table 1” shows. 

Table 1. IPv4 Prefix sets to test the two versions of Bird. 

Prefix set alias # of nodes 

Prefix1 262,039 

Prefix2 351,645 

Prefix3 482,500 

Prefix4 1,179,648 

Prefix5 1,310,720 

Prefix6 2,490,368 
 

The two versions of Bird i.e. standard Bird and 

Bloom-Bird are evaluated by inserting these real prefix 

sets and querying them. Prefix sets 4 and 5 are manually 

generated which contains all possible 24 length prefixes 

starting with 1-19 and 20-39 octets respectively. Prefix set 

6 is concatenation of two prefix sets 4 and 5 in order to 

test searching FIBs with even bigger prefix sets and make 

sure about the results. These last three prefix sets contain 

99% missing (not existing) prefixes compared to the other 

three real prefixes (i.e. prefix sets 1-3) in order to show 

performance of BF when most queries return negative 

answer (best case). These last three prefix sets are not real 

prefix traces; therefore, they are only used for searching, 

not for inserting into FIBs. 

Percentage of number of missing nodes when each 

prefix set is searched is presented in “Table 2”. For 

example when all prefixes in prefix set 2 are inserted into 

a FIB and all prefixes in the prefix set 1 are queried 

afterwards, 24.53% of searches return negative answer. 

Table 2. Percentage of missing nodes when searching for IPv4 prefix sets 

Inserted prefix set / 

Searched prefix set 
Prefix1 Prefix2 Prefix3 

Prefix1 0 24.53% 36.27% 

Prefix2 43.65% 0 22.92% 

Prefix3 65.34% 43.82% 0 

Prefix4 99.8% 99.77% 99.56% 

Prefix5 99.86% 99.77% 99.39% 

Prefix6 99.83% 99.77% 99.47% 
 

There are 0 values in the above Table because the same 

prefix set is inserted and searched. Results of evaluation are 

included and discussed in the following subsection. 

4.2 IPv4 Results of Bloom-Bird and Discussion 

As discussed in the previous subsection, three prefix sets 

1-3 are inserted into a FIB at three different times in two 

versions of standard Bird and Bloom-Bird and all prefix sets 

1-6 are queried afterwards. Percentages of speedups of 

Bloom-Bird (fib_find() and fib_route() functions) over 

standard Bird and FP error rate are presented in “Tables 3, 4 

and 5” respectively. These results are gained on a home PC 

with 2.88 MHz dual core CPU, 6 MB cache and 4 GB RAM 

which runs unmodified (vanilla) Linux kernel 3.12. 

Table 3. IPv4 Speedups of Bloom-Bird fib_find() over standard Bird - 

Simple Search Function (*) means the same prefix set is inserted 

Inserted prefix set / 

Searched prefix set 
Prefix1 Prefix2 Prefix3 

Prefix1 (*) 20% 45% 55% 

Prefix2 53% (*) 17% 47% 

Prefix3 61% 58% (*) 28% 

Prefix4 81% 93% 91% 

Prefix5 82% 91% 91% 

Prefix6 81% 93% 90% 

Table 4. IPv4 Speedups Bloom-Bird of fib_route() over standard Bird - LPM 

Search Function (*) means the same prefix set is inserted  

Inserted prefix set / 

Searched prefix set 
Prefix1 Prefix2 Prefix3 

Prefix1 (*) 14% 33% 41% 

Prefix2 26% (*) 26% 36% 

Prefix3 33% 43% (*) 32% 

Prefix4 41% 62% 64% 

Prefix5 44% 63% 63% 

Prefix6 42% 63% 64% 
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Table 5. IPv4 False Positive Percentage of Bloom-Bird 

(*) means the same prefix set is inserted  

Inserted prefix set / 

Searched prefix set 
Prefix1 Prefix2 Prefix3 

Prefix1 (*) 0 1.04% 2.14% 

Prefix2 5.46% (*) 0 1.41% 

Prefix3 7.58% 1.25% (*) 0 

Prefix4 8.69% 0.86% 1.66% 

Prefix5 9.49% 1.07% 2.3% 

Prefix6 9.11% 0.97% 1.88% 
 

In the “Table 3”, speedups of fib_find() function which 

is responsible for simple searching for a given prefix and 

length is presented. In the “Table 4”, speedups of fib_route() 

function which is responsible for Longest Prefix Matching 

(LPM) is presented (starting length for LPM is set to 32 for 

all searches). In the “Table 5”, percentage of FP error rate is 

presented. Also there are 6 rows in the all aforementioned 

tables, representing what prefix set is searched. The smallest 

speedup is 14% and biggest speedup is 93%. Smaller 

speedups are gained when most prefixes are found after 

search (i.e. number of existing nodes are bigger than 

missing nodes). On the other hand, bigger speedups are 

gained when most prefixes are not found after search. 

It is well known that FP error can be estimated using 

following equation [13]: 
 

    [     
 

 
    ]

 

    (1) 
 

In which k, m and n represent number of hash 

functions, size of array, and number of inserted elements, 

respectively. It gives a nearly accurate estimation and it is 

used in this paper to evaluate resulted FP errors. The 

optimal number of hashes (k) can be calculated using 

following equation: 
 

  
 

 
         (2) 

 

Although Eq. “(2)” gives us optimal number of hashes 

(k) but we need to keep it at its lowest possible value in 

the Bloom-Bird. Because the higher the k value becomes, 

the more overhead is caused. That is because of 

sequential execution of BF array probes in the Bloom-

Bird. Therefore, as mentioned before, the number of 

hashes (k) is set constant number equal to 2. 

In order to guarantee its FP rate and performance, the 

Bloom-Bird calculates its BF array size based on 

following equation: 
 

              (3) 
 

Therefore, for its default 18-bits order (maximum number 

of inserted elements can be up to n=2
18

), size of BF array can 

be calculated based on Eq. “(3)” which leads to m=2
20

. 

Consequently, given these values of m,n and k=2, Eq. “(1)” 

results 15% FP error rate. Experimental results also show the 

expected value even in lower rates; As “Table 5” shows, the 

most FP error rate is 9.49 percent. Therefore, Bloom-Bird 

handles its FP error rate even better than expected. 

The practical FP rate of Bloom-Bird is calculated 

based on the following equation: 
 

     
                        

               
   (4) 

Based on the experiments, for small number of 

prefixes, BF counts only as a memory overhead on Bird 

i.e. no valueable speedup will be gained. Therefore, BF 

feature of Bloom-Bird will remain deactivated until its 

main hash table reaches into 16-bit order. Afterwards, BF 

array will be allocated and initialized to zero. Hashing 

mechanism in the BF of Bloom-Bird is inspired by the 

main hash table of Bird as mentioned before. If number of 

enteries increases, Bloom-Bird changes size and order of 

BF feature like the way main hash table does. Bloom-Bird 

starts with 18-bit order and it increases to 20-bit if the 

capacity limit is reached (i.e. number of inserted elements 

reaches n=2
18

). This expansion continues until 32-bit. 

In the three “Tables 3, 4, and 5” results show how 

scaling feature helps accelerating the Bloom-Bird when 

prefix set 2 is inserted in comparison when prefix set 1 is 

inserted. Since number of prefixes in the prefix set 2 is 

bigger than Bloom-Bird default hash order (i.e. 18-bits), 

the order of BF is scaled up to 20-bits and consequently 

the FP is decreased in comparison when prefix set 1 is 

inserted. This situation also shows how FP error rate is 

important and can make the searches faster. 

When “Tables 3 and 4” are compared, the speedups of 

fib_route() function are lower than its similar situation in 

the fib_find(). That is because of fib_find() tires just once 

for given prefix and length but fib_route() tries W(n) 

times in worst case which n is 32 for IPv4. Therefore, 

fib_route() in most cases finds the best match. 

For memory usage, number of bits in the BF array can 

be calculated using Eq. “(3)” as mentioned before. 

Although 4-bit counters are generally used for counters in 

CBF, in the Bloom-Bird FIBs, 8-bit counters are used in 

the CBF because of simplicity and lower overhead of 

increment operations in the PC for Byte data-type. Since 

k is constant and is set to 2 and maximum number of 

inputs by default is 18-bits (i.e. n=2
18

); therefore, the 

memory requirement for Bloom-Bird in the 18-bits order 

based on Eq. “(3)” is 1 MB. When the capacity limit is 

reached, it will be incremented by 2; therefore, it will be 

20-bits order. This order requires 4 MB of memory. This 

expansion continues until 32-bit and the memory 

requirement can be calculated using Eq. “(3)”. 

Similar to two previous sub-sections which IPv4 

scenario and results discussed, in the following two sub-

sections, the same approach is used but IPv6 prefix sets 

are used. In the first subsection, scenario is discussed and 

in the next subsection, results are discussed.  

4.3 IPv6 Scenario 

Compared to IPv4, unfortunately, latest traces from 

RouteViews [19] show that existing IPv6 prefixes are very 

fewer. For example number of latest IPv6 unique prefixes 

were 16,500 compared to IPv4 which were more than 

480,000 unique prefiex. Therefore, in order to show BF 

advantage of Bloom-Bird over standard Bird, we had to 

increase the IPv6 prefix sets. For this purpose, ipv6gen [20] 
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tool is used in order to increase number of unique prefixes 

by calculating possible subnets from exitsing real prefixes. 

Moreover, just like previous scenario in the first sub-

section, three completely manually generated prefixes (not 

real) are generated using ipv6gen in order to show BF 

efficiency. The IPv6 prefix sets are shown in the “Table 6”.  

It should be noted that Bird router converts all IPv6 

prefixes into a single 32-bits IP structure using bit-wise 

OR. It means all previous IPv4 functions can be applied 

to IPv6 prefixes. The 128-bits prefixes are split into four 

32-bits and they are bit-wise ORed into a single 32-bits 

prefix. Therefore, Bloom-Bird functions can be applied 

easily to the IPv6 prefixes.  

Table 6. IPv6 Prefix sets to test the two versions of Bird. 

Prefix set alias # of nodes 

Prefix1 491,136 

Prefix2 762,816 

Prefix3 1,042,176 

Prefix4 2,103,152 

Prefix5 2,109,152 

Prefix6 4,212,304 
 

Prefix sets 1-3 are based on real IP6 prefix sets 

gathered from RouteViews [19] from years 2011, 2012 

and 2013 sorted by date respectively. The two versions of 

Bird i.e. standard Bird and Bloom-Bird are evaluated by 

inserting these real prefix sets and querying them. Prefix 

sets 4 and 5 are manually generated using ipv6gen [20] 

tool. Prefix set 6 is concatenation of two prefix sets 4 and 

5 in order to test searching FIBs with even bigger prefix 

sets and make sure about the results. These last three 

prefix sets contain 99% missing (not existing) prefixes 

compared to the other three real prefixes (i.e. prefix sets 

1-3) in order to show performance of BF when most 

queries return negative answer. These last three prefix 

sets are not real prefix traces; therefore, they are only 

used for searching, not for inserting into FIBs.  

Percentage of number of missing nodes when each 

prefix set is searched, is presented in “Table 7”. For 

example when all prefixes in prefix set 2 are inserted into 

a FIB and all prefixes in the prefix set 1 are queried 

afterwards, 12.03% of searches return negative answer. 

Table 7. Percentage of missing nodes when searching for prefix sets 

Inserted prefix set / 

Searched prefix set 
Prefix1 Prefix2 Prefix3 

Prefix1 0 12.03% 19.3% 

Prefix2 43.36% 0 10.56% 

Prefix3 61.9% 36.83% 0 

Prefix4 99.74% 99.72% 99.76% 

Prefix5 99.54% 99.47% 99.5% 

Prefix6 99.64% 99.6% 99.63% 
 

Results of evaluation based on IPv6 prefix sets are 

included and discussed in the following subsection. 

4.4 IPv6 Results of Bloom-Bird and Discussion 

As discussed in the previous subsection, three IPv6 

prefix sets 1-3 are inserted into a FIB at three different 

times in the two versions of standard Bird and Bloom-

Bird and all prefix sets 1-6 are queried afterwards. 

Percentages of speedups of Bloom-Bird (fib_find() and 

fib_route() functions) over standard Bird and FP error rate 

are presented in “Tables 8, 9 and 10”, respectively. As 

mentioned in the second sub-section, these results are 

gained on a home PC with 2.88 MHz dual core CPU, 6 

MB cache and 4 GB RAM which runs unmodified 

(vanilla) Linux kernel 3.12. 

Table 8. IPv6 Speedups of Bloom-Bird fib_find() over standard Bird - 

Simple Search Function (*) means the same prefix set is inserted  

Inserted prefix set / 

Searched prefix set 
Prefix1 Prefix2 Prefix3 

Prefix1 (*) 8% 30% 33% 

Prefix2 49% (*) 19% 32% 

Prefix3 56% 46% (*) 18% 

Prefix4 90% 91% 90% 

Prefix5 70% 67% 60% 

Prefix6 83% 80% 79% 

Table 9. IPv6 Speedups Bloom-Bird of fib_route() over standard Bird - LPM 

Search Function (*) means the same prefix set is inserted 

Inserted prefix set / 

Searched prefix set 
Prefix1 Prefix2 Prefix3 

Prefix1 (*) 10% 18% 22% 

Prefix2 18% (*) 14% 22% 

Prefix3 20% 24% (*) 17% 

Prefix4 22% 63% 64% 

Prefix5 54% 60% 62% 

Prefix6 31% 62% 63% 

Table 10. IPv6 False Positive Percentage of Bloom-Bird 

(*) means the same prefix set is inserted  

Inserted prefix set / 

Searched prefix set 
Prefix1 Prefix2 Prefix3 

Prefix1 (*) 0 2.82% 5.58% 

Prefix2 5.85% (*) 0 3.81% 

Prefix3 7.27% 6.5% (*) 0 

Prefix4 4.33% 8.21% 13.18% 

Prefix5 3.67% 7.39% 12.07% 

Prefix6 4.00% 7.8% 12.62% 
 

In the “Table 8”, speedups of fib_find() function 

which is responsible for simple searching for a given 

prefix and length is presented. In the “Table 9”, speedups 

of fib_route() function which is responsible for Longest 

Prefix Matching (LPM) is presented (starting length for 

LPM is set to 128 for all searches). In the last “Table 10”, 

percentage of FP error rate is presented. Also there are 6 

rows in the aforementioned tables, representing what 

prefix set is searched. The smallest speedup is 8% and 

biggest speedup is 91%. Smaller speedups are gained 

when most prefixes are found after search (i.e. number of 

existing nodes are bigger than missing nodes). On the 

other hand, bigger speedups are gained when most 

prefixes are not found after search. 

As mentioned before, in order to guarantee FP rate 

and performance, the Bloom-Bird calculates its BF array 

size based on Eq. “(3)”. Therefore, for its default 18-bits 

order (maximum number of inserted elements can be up 

to n=2
18

), size of BF array can be calculated based on Eq. 

“(3)” which leads to m=2
20

. Consequently, given these 

values of m,n and k=2, Eq. “(1)” results 15% FP error rate. 

Experimental results also prove the resulted value even in 

lower values which “Table 10” shows the most FP error 

rate resulted is 13.18 percent. Therefore, Bloom-Bird 

handles its FP error rate even better than expected. 
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When “Tables 8 and 9” are compared, the speedups of 

fib_route() function are lower than their similar situation 

in the fib_find(). That’s because of fib_find() tires just 

once for given prefix and length but fib_route() tries W(n) 

times in worst case which n is 128 for IPv6. Consequently, 

fib_route() in most cases finds the best match. 

Although comparing IPv6 scenario to IPv4 scenario is 

not fair in general because of different number of prefixes 

and length distribution of them, but speedup of IPv6 

compared to IPv4 is a little lower and False Positive 

errors are a little higher. The only reason for that can be 

simple hashes that cannot distribute the IPv6 prefixes as 

well as IPv4 prefixes that use fewer bits to represent 

prefixes. Therefore, False Positive errors because of 

simple IPv6 hashes become bigger and speedups become 

lower compared to IPv4 scenario. 

5. Conclusion 

The paper showed and presented another application 

of Bloom filter on a practical open-source router. The BF 

implementation on Bird’s FIB data structure showed that 

it can help Bird to search and route faster when number of 

inserted prefixes into a FIB becomes huge. Bloom-Bird 

which utilizes a Bloom filter in its architecture, evaluated 

using various prefix sets gathered from real routers traces 

and also manually generated prefix sets to make the tests 

more accurate and reliable. Bloom-Bird employs a 

Bloom-filter in Bird’s FIB data structure in order to 

accelerate the IP lookups when FIB’s linked list chains 

become long. Comparison using different prefix sets 

showed that up to 93% speedup is gained when most 

searches return negative answer. This improvement is 

achieved at the cost of Bloom filter space overhead. 

Moreover, it is showed how Bloom-Bird can handle its 

FP error rate when number of inserted prefixes increases 

by scaling the Bloom filter capacity. The results presented 

and discussed for both IPv4 and IPv6 prefix sets.  

Regardless whether Bloom filter is going to be used as 

an extra stage before hashing mechanism or other 

searching data structures (e.g. trie), it can help to avoid 

traversing chains and paths when result of a search is 

negative. Therefore, our software based approach is 

applicable to any other software based routers to 

accelerate their IP lookups when their FIBs become huge.  
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