

* Corresponding Author

Towards Accelerating IP Lookups on Commodity PC Routers

using Bloom Filter: Proposal of Bloom-Bird

Bahram Bahrambeigy*
Department of Datacenter, Pishgaman Tose Ertebatat (PTE) Inc., Tehran, Iran

b.bahrambeigy@pishgaman.net

Mahmood Ahmadi
Department of Computer Engineering, Razi University, Kermanshah, Iran

m.ahmadi@razi.ac.ir

Mahmood Fazlali
Department of Computer Science, Shahid Beheshti University (SBU), GC, Tehran, Iran

fazlali@sbu.ac.ir

Received: 21/May/2015 Revised: 16/Nov/2016 Accepted: 16/Dec/2016

Abstract
Nowadays, routers are the main backbone of computer networks specifically the Internet. Moreover, the need for high-

performance and high-speed routers has become a fundamental issue due to significant growth of information exchange

through the Internet and intranets. On the other hand, flexibility and configurability behind the open-source routers has

extended their usage via the networks. Furthermore, after assigning the last remaining IPv4 address block in 2011,

development and improvement of IPv6-enabled routers especially the open-sources has become one of the first priorities

for network programmers and researchers. In IPv6 because of its 128-bits address space compared to 32-bits in IPv4,

much more space and time are required to be stored and searched that might cause a speed bottleneck in lookup of routing

tables. Therefore, in this paper, Bird as an example of existing open source router which supports both IPv4 and IPv6

addresses is selected and Bloom-Bird (our improved version of Bird) is proposed which uses an extra stage for its IP

lookups using Bloom filter to accelerate IP lookup mechanism. Based on the best of our knowledge this is the first

application of Bloom filter on Bird software router. Moreover, false positive errors are handled in an acceptable rate

because Bloom-Bird scales its Bloom filter capacity. The Bloom-Bird using real-world IP prefixes and huge number of

inserted prefixes into its internal FIB (Forwarding Information Base), shows up to 61% and 56% speedup for IPv4 and

IPv6 lookups over standard Bird, respectively. Moreover, using manually generated prefix sets in the best case, up to 93%

speedup is gained.

Keywords: Bird; Bloom Filter; Forwarding Information Base; IPv4; IPv6; Open Source Routers.

1. Introduction

The need for high-performance and high-speed routers

has become a fundamental issue due to significant growth

of information exchange through Internet and intranets.

Due to adoption of Class-less Inter-domain Routing

(CIDR) method, routers need to find best match between

various prefix lengths that may differ from lengths 1 to

128 based on what version of IP and what prefix is used.

This process of finding matching IPs is time consuming

and a lot of hardware (e.g. TCAM and SRAM) and

algorithmic approaches (e.g. binary searches) are

proposed in the literature as will be discussed further in

the related work section.

On the other hand, modern IP router solutions can be

classified into three main categories, hardware routers,

software routers, and programmable network processors

(NPs) [1]. PC-based software routers have created

reasonable networking platforms with easy development

and programmability features. These features are the most

important in comparison with hardware routers. Current

software routers reported forwarding up to 40 Gbits/sec

traffic on a single commodity personal computer [2]. On

the other hand, existence of open-source software routers

has brought the opportunity to study and change their

codes to make the better routers based on researchers

needs. Bird [3], Quagga [4], and Xorp [5] are examples of

such open-source routers. Among them, the Bird is

selected to implement a Bloom filter (BF) [6] on its

internal FIB (Forwarding Information Base) in which all

routing tables are based on this data-structure. Since

searching in a FIB which stores a huge number of IP

prefixes can cause speed bottleneck, we have accelerated

it using an extra stage lookup on Bloom filter data-

structure. Results show that BF as an extra stage on Bird

IP lookups (i.e. Bloom-Bird) makes it up to 93% faster

than its standard hashing mechanism for searching big

FIBs in the best case. Also results indicate that there is

even speedup when result of searching a particular prefix

in the FIB is positive because of hash optimizations made

in the Bloom-Bird.

The main concern in this paper is to show how a

Bloom filter can help an open-source software router to

speedup searches when number of inserted nodes and

Bahrambeigy, Ahmadi & Fazlali, Towards Accelerating IP Lookups on Commodity PC Routers using Bloom Filter: Proposal of Bloom-Bird

26

prefixes becomes huge. In order to have a fair comparison

between two versions of Bird (i.e. standard Bird and

Bloom-Bird), basic rules and structures of standard Bird

is not changed. For example maximum length of Bird’s

main hash is 16-bits, so it is the same for Bloom-Bird too.

The Bloom-Bird includes a Bloom filter array (thus a

space overhead) to speedup simple searches for a given IP

and length and also Longest Prefix Matching (LPM)

lookups. The array can scale its capacity; therefore, False

Positive (FP) errors are handled in an acceptable rate.

The main contribution of the paper is proposal of

Bloom-Bird router to enhance the performance of Bird

open-source router that utilizes a Bloom filter for both

IPv4 and IPv6 addresses in its architecture.

The rest of the paper is organized as follows. Section

2 presents related work of Bloom filter and its

applications in network processing. Section 3, contains

two subsections, which first, is a brief introduction to FIB

data structure of Bird and how Bloom-Bird is

implemented conceptually, and in the latter subsection the

pseudo-codes of implemented approach is presented.

Section 4 contains four subsections, which the first two

sub-sections are dedicated to IPv4 prefix sets and the last

two sub-sections are based on IPv6 prefix sets. Therefore,

in Section 4, the first sub-section presents an introduction

of the scenario in order to evaluate Bloom-Bird and

standard Bird using IPv4 prefixes, and in the second

subsection, results of Bloom-Bird evaluation are

presented; third and fourth sub-sections are similar to

previous sub-sections but they are based on IPv6 prefix

sets. Finally, section 5 concludes the paper.

2. Related Work

Bloom filter (BF) is a randomized and probabilistic

data-structure proposed by Burton Bloom in the 1970s [6].

BF normally consists of a bit-array representing existence

of inserted elements. By checking k hash functions and

getting negative answer, it can be determined that the

element is not inserted certainly. However some FP (False

Positive) may occur. Which means BF may express some

elements exist by mistake so it needs to check main hash

table to make sure about positive answers. Bit-array of BF

can reside in an on-chip memory by a hardware

implementation to do k hash functions checks in parallel.

The main advantage of BF structure is Space and Time

efficiency in which consumes much less space than

ordinary data structures because of its potential collisions

and requires much less and more predictable time to

query a member.

A lot of variants of BFs are proposed such that more

than 20 variants of BF are presented in the literature [7].

Each and every one of them is used for a special manner.

For example, standard Bloom filter (SBF) is used in order

to check if a specific element is present or not. An

important draw-back of SBF is that insertions cannot be

undone. Counting Bloom filter (CBF) [8] and later,

Deletable BF (DlBF) [9] proposed in order to gain the

removability in BF. In CBF each bit in the Bloom array is

replaced by a counter. Each insertion, increments counters

related to k hash functions. Obviously, each deletion

decrements related counters. Another variant of BF which

supports deletions as mentioned is DlBF. It splits BF

array into multiple regions and tracks regions of BF array

in which collisions occur. A small fraction of bit-array is

used in order to determine related area is collision-free or

not. If bits are located in a collision-free region, then the bit

can be reset safely, otherwise it will not be safe to delete.

Therefore, some bits may not reset if they are located in a

collisionary region. CBF is selected for Bloom-Bird

because of its simplicity and consistency over deletions

instead of DlBF. DlBF would be a good option if BF is

going to be implemented in an on-chip memory.

BFs are used in various applications including

network processing as discussed in [10] that can be

classified into four major categories: Resource routing,

Packet routing, Measurement, and Collaborating in

overlay and peer-to-peer networks. Moreover, “IP Route

lookup” and “Packet Classification” are important

applications of BF in the network processing (e.g. [11]).

Longest Prefix matching (LPM) or Best Matching Prefix

(BMP) that can be classified into IP route lookup category

is also an interesting area of BF application. There are a

lot of proposed algorithms in order to speedup BMP in

the literature. In [12] authors have classified BMP

algorithms into “Trie-based algorithms”, “Binary search

on prefix values”, and “Binary search on prefix lengths”.

“A Trie is a tree-based data-structure allowing

organization of prefixes on a digital basis using the bits of

prefixes to direct the branching” [12]. Trie-based schemes

do a linear search on prefix length because they only

compare one bit at a time. The worst case of memory

accesses is W when prefix length is W. However, binary

search algorithms on prefix values are proportional to

log2N which N is number of prefixes. Binary search on

prefix lengths are proportional to log2W. The first BF

application for LPM proposed in [13] which parallel

check on on-chip memory is performed to accelerate

lookups before checking slower off-chip memory.

Although employing Bloom filters as an extra stage to

accelerate IP lookups is well studied by Dharmapurikar et

al. [13], Bloom-Bird is different because it is completely

independent of specialized hardware implementation and

it runs on commodity PC hardware. Therefore, number of

hashes is kept as low as possible and the hash probes can

be run sequentially and BF can reside in slow memory

without loss of efficiency. Moreover, BF on Bloom-Bird

helps to accelerate (prefix, length) pair searches in the

FIB data structure by ignoring long chains of linked lists

of the main hash table. In order to have a fair comparison,

basic rules and chain orders of Bird are not modified and

modifications are as low as possible.

Furthermore, because IPv6 uses more bits to represent

IP addresses (128-bit) compared to IPv4 (32-bit),

therefore, it is expected that number of IPv6 prefixes

Journal of Information Systems and Telecommunication, Vol. 5, No. 1, January-March 2017 27

becomes much bigger than current IPv4 prefixes in a near

future. Therefore, trie-based schemes will become

inefficient. Therefore, multi-bit tries [14] are proposed

which compare more than one bit at a time at the cost of

space overhead. However, whether Binary search or trie-

based lookups is used, it is shown that Bloom filters can

accelerate IPv6 lookups too [15], [16]. Nevertheless, the

main advantages of our work over the two

aforementioned approaches accelerating IPv6 lookups

using Bloom filters is that they are based on a special

hardware implementation but Bloom-Bird runs

completely on commodity PC hardware. To assert again,

we didn’t change the main hash of standard Bird into

better lookup approaches like trie-based schemes or

binary searches, in order to have a fair comparison

between standard Bird and Bloom-Bird.

The following section explains Bird open source

router fundamental data-structures, pseudo-codes of them

and how are they are improved in Bloom-Bird.

3. Bloom-Bird: A Better Bird

“The Bird project aims to develop a fully functional

dynamic IP routing daemon primarily targeted on (but not

limited to) Linux, FreeBSD and other UNIX-like systems”

[3]. It supports latest versions of routing protocols such as

BGP, RIP and OSPF. It also supports both IPv4 and IPv6

addresses and a simple command line interface to

configure the router. There is a fundamental data-

structure called FIB (Forwarding Information Base) in the

Bird which routing tables are based on it. This data-

structure stores IP prefixes and length of them. Searching

in a FIB, where huge number of prefixes is stored can

become a speed bottleneck, which can be faster using a

CBF (Counting Bloom Filter) as will be presented.

Storing in FIB of Bird router is a two stage mechanism. In

the first stage, an order-bit hash is calculated based on

prefix value to find bucket index of main hash table

(order can be varied from 10 to 16). In the next stage,

there is a chain of nodes in linked list structure which may

become long due to huge number of nodes. Therefore, a

BF can help to reduce of traversing these long chains for

missing nodes which results in accelerating the IP lookup

mechanism. Nodes are allocated in each chain by Bird

Slab Allocator. The implementation of the memory

allocator is based on what Bonwick proposed [17] that

makes linked list traversing reasonably fast.

To be more specific, there are three important

functions related to FIBs in the Bird named fib_get(),

fib_find(), fib_route() which are responsible for adding,

searching and longest prefix matching, respectively. Each

FIB structure in Bird starts with a default 10-bit hash

order (i.e. 2
10

) and increases its hash table size when the

number of prefixes increases. This expansion will stop at

16-bit; therefore, chain lengths start to become larger.

Implemented BF helps the main hash table when this

situation happens to prevent searching in this large FIB

chains when an IP prefix cannot be found.

In the following subsection, the way Bloom-Bird

implemented is presented conceptually. In the next

subsection, the pseudo-codes of implemented approach

are discussed.

3.1 Implementation Concepts

Bird uses dynamic hashing size to store prefixes

which increases when number of inserted prefixes

becomes huge. It starts from 10-bit and it expands until

16-bit order and never grows afterwards. It increments the

order by 2 when the capacity limit is reached (e.g. it

expands into 12-bit when 10-bit limit is reached). In order

to have a fair comparison between standard Bird and

Bloom-Bird, these rules are not changed. Therefore,

Bloom-Bird includes an extra BF array in each FIB to

help it responding faster when it is possible.

Hashing mechanism in the BF of Bloom-Bird is

inspired by the main hash table of the standard Bird. If

number of entries increases, Bloom-Bird changes size and

order of BF array similar to the main hash table approach.

Bloom-Bird starts with 18-bit order and it increases to 20-

bit order if the capacity limit is reached. This expansion

continues until 32-bit and it never grows afterwards. For

simplicity, this expansion of BF array is not included in

the pseudo-codes in the next subsection. Because of 32-

bit order limit, capacity of BF array is limited to 32-bit

when an acceptable FP error rate is expected. As the

results will show, Bloom-Bird shows at most 15% FP

error rate which is fairly good based on Eq. “(1)” in

section 5 and tested elements.

In “Fig. 1” a simple Bird’s FIB hashing table is

depicted. In the aforementioned Figure, the order can be

varied from 10 to 16 as mentioned before. Basic fib_find()

function that searches for a given prefix and length in a

FIB is shown which uses ipa_hash() function to determine

which bucket in main hash table should be used. Main

hash array is an order-bit array of fib_node type.

Afterwards, the node will be inserted into a new free

location in the linked lists chain.

Fig. 1. FIB hashing architecture of standard Bird [3].

In “Fig. 2” the way that BF is implemented in the FIB

is depicted. The fib_find() function checks BF for given

prefix firstly. If BF confirms the existence of the prefix,

Bahrambeigy, Ahmadi & Fazlali, Towards Accelerating IP Lookups on Commodity PC Routers using Bloom Filter: Proposal of Bloom-Bird

28

then the main hash table will be checked in order to

determine pointer address of found node or a FP error may

occur. On the other hand, (and more importantly) if BF

returns negative answer, checking main hash table will be

ignored. Therefore, the main advantage of BF is the latter

part in which checking main hash table and maybe

traversing long chains of linked lists can be avoided.

Fig. 2. FIB hashing architecture of Bloom-Bird.

3.2 Implementation Codes

The pseudo-code of fib_find() in the standard Bird (as

discussed), is shown as SB_fib_find() function (in order

to distinguish between standard Bird and Bloom-Bird

functions, SB_ is prepended to Bird functions and BB_ is

prepended to Bloom-Bird functions). In the first line, e

variable points to the selected bucket which is traversed in

order to find given prefix. In the second and third lines,

the bucket chain is traversed to find the requested node.

Two situations may happen after this loop. The loop may

find the node, and then last line returns the node.

Otherwise, traversing linked list may end with a null

pointer; therefore, fourth line returns a null pointer

indicating that the node cannot be found.

Psuedo-Code1. SB_fib_find()
SB_fib_find(fib, prefix, length)

1. e = fib_table[ipa_hash(prefix)]

2. while((not empty e) AND (not found e))

3. e = e->next

4. return e

In the Bloom-Bird version of this function, in the first

line, BF array and its hashing mechanism is used in order

to ignore prefixes that do not exist as discussed earlier.

The function is changed as BB_fib_find(). Three first

lines are dedicated to BF search method for a given prefix.

There are k hash probes in order to search BF. In each

step of the loop, if a location of the BF array represents an

empty location then the search returns false answer

immediately (i.e. NULL pointer). As it is shown in

second line, k independent hash functions are used for BF

to check the array locations. These hash functions are also

depicted in “Fig. 2” as bloom_hashi().

Psuedo-Code 2. BB_fib_find()
BB_fib_find(fib, prefix, length)

1. for(i=1 to k)

2. if(filter[bloom_hashi(prefix)] is

empty)

3. return NULL

4. e = fib_table[hash(prefix)]

5. while((not empty e) AND (not found e))

6. e = e->next

7. return e

Bird uses very simple longest prefix matching (LPM)

mechanism that starts from a given length and decrements it

until longest prefix match is found or returns a NULL pointer.

The pseudo-code is shown as SB_fib_route() function.

Since fib_route() uses fib_find() as its main function

to determine existence of the prefixes, BF can help

fib_route() very effectively because BF causes no false

negative errors and it does not need to go through the

main hash chains for lengths that cannot be found.

Therefore, there is no need to change anything in the

fib_route() function and BF helps LPM indirectly.

Although there are better solutions like binary searches on

prefix values and lengths as mentioned in related work

section, Bird’s LPM algorithm is not changed in order to

show BF performance over standard Bird.

Psuedo-Code 3. SB_fib_route()
SB_fib_route(fib, prefix, length)

1. while (length ≥ 0)

2. if(fib_find(fib, prefix, length))

3. return found node

4. else

5. length = length – 1

6. return NULL

The last important function is fib_get() which searches

for given prefix and length and if does not exist, it adds

the prefix into the FIB. The pseudo-code of this function

is presented as SB_fib_get() function. It is shown in the

first line that the fib_get() uses fib_find() function as its

searching mechanism. If it finds the node then the found

node pointer will be returned. Otherwise the node will be

inserted into selected bucket of the hash table.

Psuedo-Code 4. SB_fib_get()
SB_fib_get(fib, prefix, length)

1. if(fib_find(fib, prefix, length))

2. return found node

3. else

4. Go down through hash chains

5. And add new node

To check existence of nodes in this function also BF

can help through fib_find() when a node does not exist.

Therefore, in the first line, BF is checked before its main

hash table and when a node is not inserted before, BF

counters should be incremented (because CBF is used).

Therefore, only one change is needed in this function.

This function is been shown as BB_fib_get() function.

Journal of Information Systems and Telecommunication, Vol. 5, No. 1, January-March 2017 29

Psuedo-Code 5. BB_fib_get()
BB_fib_get(fib, prefix, length)

1. if(fib_find(fib, prefix, length))

2. return found node

3. else

4. Go down through hash chains

5. And add new node

6. for(i=1 to k)

7. filter[bloom_hashi(prefix)] += 1

Extra lines 6 and 7 of BB_fib_get() function are

responsible for updating BF array due to newly added

node. This does not count as overhead since hash

functions are optimized using bit-wise operations and

simplifications compared to standard hash of Bird.

There are two different types of hash functions used in

the Bloom-Bird. First type is much like Bird’s original hash

function which returns a 16-bit hash based on prefix value

but optimized using bit-wise operations (ipa_hash()

function). Second type hash functions are used for BF

which has much less collisions than Bird’s original hash

function. These second type hash functions return a variety

of bit sizes based on BF array length. Number of BF hash

functions (k) is set to the lowest possible value. Two

possible minimum values of k has been tested (i.e. k=3 and

k=2). In which k=3 tests showed a little speed overhead

compared to k=2 tests while the FP error rate was almost

the same. Therefore, the k=2 value is selected for Bloom-

Bird to compare its performance with standard Bird.

Therefore, in the Bloom-Bird, k is constant and is set

to 2 because the loop of checking k hash functions

becomes speed bottleneck for bigger k.

In next Section the scenario and prefix sets in order to

compare Bloom-Bird and standard Bird and evaluation

are presented and discussed.

4. Evaluation of Bloom-Bird and Results

4.1 IPv4 Scenario

In order to evaluate standard Bird and Bloom-Bird

three real IPv4 prefix sets from [18] are gathered from

years 2008, 2010 and 2013 sorted by date which latest

and more updated one contains more than 482 thousands

unique IPv4 prefixes as “Table 1” shows.

Table 1. IPv4 Prefix sets to test the two versions of Bird.

Prefix set alias # of nodes

Prefix1 262,039

Prefix2 351,645

Prefix3 482,500

Prefix4 1,179,648

Prefix5 1,310,720

Prefix6 2,490,368

The two versions of Bird i.e. standard Bird and

Bloom-Bird are evaluated by inserting these real prefix

sets and querying them. Prefix sets 4 and 5 are manually

generated which contains all possible 24 length prefixes

starting with 1-19 and 20-39 octets respectively. Prefix set

6 is concatenation of two prefix sets 4 and 5 in order to

test searching FIBs with even bigger prefix sets and make

sure about the results. These last three prefix sets contain

99% missing (not existing) prefixes compared to the other

three real prefixes (i.e. prefix sets 1-3) in order to show

performance of BF when most queries return negative

answer (best case). These last three prefix sets are not real

prefix traces; therefore, they are only used for searching,

not for inserting into FIBs.

Percentage of number of missing nodes when each

prefix set is searched is presented in “Table 2”. For

example when all prefixes in prefix set 2 are inserted into

a FIB and all prefixes in the prefix set 1 are queried

afterwards, 24.53% of searches return negative answer.

Table 2. Percentage of missing nodes when searching for IPv4 prefix sets

Inserted prefix set /

Searched prefix set
Prefix1 Prefix2 Prefix3

Prefix1 0 24.53% 36.27%

Prefix2 43.65% 0 22.92%

Prefix3 65.34% 43.82% 0

Prefix4 99.8% 99.77% 99.56%

Prefix5 99.86% 99.77% 99.39%

Prefix6 99.83% 99.77% 99.47%

There are 0 values in the above Table because the same

prefix set is inserted and searched. Results of evaluation are

included and discussed in the following subsection.

4.2 IPv4 Results of Bloom-Bird and Discussion

As discussed in the previous subsection, three prefix sets

1-3 are inserted into a FIB at three different times in two

versions of standard Bird and Bloom-Bird and all prefix sets

1-6 are queried afterwards. Percentages of speedups of

Bloom-Bird (fib_find() and fib_route() functions) over

standard Bird and FP error rate are presented in “Tables 3, 4

and 5” respectively. These results are gained on a home PC

with 2.88 MHz dual core CPU, 6 MB cache and 4 GB RAM

which runs unmodified (vanilla) Linux kernel 3.12.

Table 3. IPv4 Speedups of Bloom-Bird fib_find() over standard Bird -

Simple Search Function (*) means the same prefix set is inserted

Inserted prefix set /

Searched prefix set
Prefix1 Prefix2 Prefix3

Prefix1 (*) 20% 45% 55%

Prefix2 53% (*) 17% 47%

Prefix3 61% 58% (*) 28%

Prefix4 81% 93% 91%

Prefix5 82% 91% 91%

Prefix6 81% 93% 90%

Table 4. IPv4 Speedups Bloom-Bird of fib_route() over standard Bird - LPM

Search Function (*) means the same prefix set is inserted

Inserted prefix set /

Searched prefix set
Prefix1 Prefix2 Prefix3

Prefix1 (*) 14% 33% 41%

Prefix2 26% (*) 26% 36%

Prefix3 33% 43% (*) 32%

Prefix4 41% 62% 64%

Prefix5 44% 63% 63%

Prefix6 42% 63% 64%

Bahrambeigy, Ahmadi & Fazlali, Towards Accelerating IP Lookups on Commodity PC Routers using Bloom Filter: Proposal of Bloom-Bird

30

Table 5. IPv4 False Positive Percentage of Bloom-Bird

(*) means the same prefix set is inserted

Inserted prefix set /

Searched prefix set
Prefix1 Prefix2 Prefix3

Prefix1 (*) 0 1.04% 2.14%

Prefix2 5.46% (*) 0 1.41%

Prefix3 7.58% 1.25% (*) 0

Prefix4 8.69% 0.86% 1.66%

Prefix5 9.49% 1.07% 2.3%

Prefix6 9.11% 0.97% 1.88%

In the “Table 3”, speedups of fib_find() function which

is responsible for simple searching for a given prefix and

length is presented. In the “Table 4”, speedups of fib_route()

function which is responsible for Longest Prefix Matching

(LPM) is presented (starting length for LPM is set to 32 for

all searches). In the “Table 5”, percentage of FP error rate is

presented. Also there are 6 rows in the all aforementioned

tables, representing what prefix set is searched. The smallest

speedup is 14% and biggest speedup is 93%. Smaller

speedups are gained when most prefixes are found after

search (i.e. number of existing nodes are bigger than

missing nodes). On the other hand, bigger speedups are

gained when most prefixes are not found after search.

It is well known that FP error can be estimated using

following equation [13]:

 [

]

 (1)

In which k, m and n represent number of hash

functions, size of array, and number of inserted elements,

respectively. It gives a nearly accurate estimation and it is

used in this paper to evaluate resulted FP errors. The

optimal number of hashes (k) can be calculated using

following equation:

 (2)

Although Eq. “(2)” gives us optimal number of hashes

(k) but we need to keep it at its lowest possible value in

the Bloom-Bird. Because the higher the k value becomes,

the more overhead is caused. That is because of

sequential execution of BF array probes in the Bloom-

Bird. Therefore, as mentioned before, the number of

hashes (k) is set constant number equal to 2.

In order to guarantee its FP rate and performance, the

Bloom-Bird calculates its BF array size based on

following equation:

 (3)

Therefore, for its default 18-bits order (maximum number

of inserted elements can be up to n=2
18

), size of BF array can

be calculated based on Eq. “(3)” which leads to m=2
20

.

Consequently, given these values of m,n and k=2, Eq. “(1)”

results 15% FP error rate. Experimental results also show the

expected value even in lower rates; As “Table 5” shows, the

most FP error rate is 9.49 percent. Therefore, Bloom-Bird

handles its FP error rate even better than expected.

The practical FP rate of Bloom-Bird is calculated

based on the following equation:

 (4)

Based on the experiments, for small number of

prefixes, BF counts only as a memory overhead on Bird

i.e. no valueable speedup will be gained. Therefore, BF

feature of Bloom-Bird will remain deactivated until its

main hash table reaches into 16-bit order. Afterwards, BF

array will be allocated and initialized to zero. Hashing

mechanism in the BF of Bloom-Bird is inspired by the

main hash table of Bird as mentioned before. If number of

enteries increases, Bloom-Bird changes size and order of

BF feature like the way main hash table does. Bloom-Bird

starts with 18-bit order and it increases to 20-bit if the

capacity limit is reached (i.e. number of inserted elements

reaches n=2
18

). This expansion continues until 32-bit.

In the three “Tables 3, 4, and 5” results show how

scaling feature helps accelerating the Bloom-Bird when

prefix set 2 is inserted in comparison when prefix set 1 is

inserted. Since number of prefixes in the prefix set 2 is

bigger than Bloom-Bird default hash order (i.e. 18-bits),

the order of BF is scaled up to 20-bits and consequently

the FP is decreased in comparison when prefix set 1 is

inserted. This situation also shows how FP error rate is

important and can make the searches faster.

When “Tables 3 and 4” are compared, the speedups of

fib_route() function are lower than its similar situation in

the fib_find(). That is because of fib_find() tires just once

for given prefix and length but fib_route() tries W(n)

times in worst case which n is 32 for IPv4. Therefore,

fib_route() in most cases finds the best match.

For memory usage, number of bits in the BF array can

be calculated using Eq. “(3)” as mentioned before.

Although 4-bit counters are generally used for counters in

CBF, in the Bloom-Bird FIBs, 8-bit counters are used in

the CBF because of simplicity and lower overhead of

increment operations in the PC for Byte data-type. Since

k is constant and is set to 2 and maximum number of

inputs by default is 18-bits (i.e. n=2
18

); therefore, the

memory requirement for Bloom-Bird in the 18-bits order

based on Eq. “(3)” is 1 MB. When the capacity limit is

reached, it will be incremented by 2; therefore, it will be

20-bits order. This order requires 4 MB of memory. This

expansion continues until 32-bit and the memory

requirement can be calculated using Eq. “(3)”.

Similar to two previous sub-sections which IPv4

scenario and results discussed, in the following two sub-

sections, the same approach is used but IPv6 prefix sets

are used. In the first subsection, scenario is discussed and

in the next subsection, results are discussed.

4.3 IPv6 Scenario

Compared to IPv4, unfortunately, latest traces from

RouteViews [19] show that existing IPv6 prefixes are very

fewer. For example number of latest IPv6 unique prefixes

were 16,500 compared to IPv4 which were more than

480,000 unique prefiex. Therefore, in order to show BF

advantage of Bloom-Bird over standard Bird, we had to

increase the IPv6 prefix sets. For this purpose, ipv6gen [20]

Journal of Information Systems and Telecommunication, Vol. 5, No. 1, January-March 2017 31

tool is used in order to increase number of unique prefixes

by calculating possible subnets from exitsing real prefixes.

Moreover, just like previous scenario in the first sub-

section, three completely manually generated prefixes (not

real) are generated using ipv6gen in order to show BF

efficiency. The IPv6 prefix sets are shown in the “Table 6”.

It should be noted that Bird router converts all IPv6

prefixes into a single 32-bits IP structure using bit-wise

OR. It means all previous IPv4 functions can be applied

to IPv6 prefixes. The 128-bits prefixes are split into four

32-bits and they are bit-wise ORed into a single 32-bits

prefix. Therefore, Bloom-Bird functions can be applied

easily to the IPv6 prefixes.

Table 6. IPv6 Prefix sets to test the two versions of Bird.

Prefix set alias # of nodes

Prefix1 491,136

Prefix2 762,816

Prefix3 1,042,176

Prefix4 2,103,152

Prefix5 2,109,152

Prefix6 4,212,304

Prefix sets 1-3 are based on real IP6 prefix sets

gathered from RouteViews [19] from years 2011, 2012

and 2013 sorted by date respectively. The two versions of

Bird i.e. standard Bird and Bloom-Bird are evaluated by

inserting these real prefix sets and querying them. Prefix

sets 4 and 5 are manually generated using ipv6gen [20]

tool. Prefix set 6 is concatenation of two prefix sets 4 and

5 in order to test searching FIBs with even bigger prefix

sets and make sure about the results. These last three

prefix sets contain 99% missing (not existing) prefixes

compared to the other three real prefixes (i.e. prefix sets

1-3) in order to show performance of BF when most

queries return negative answer. These last three prefix

sets are not real prefix traces; therefore, they are only

used for searching, not for inserting into FIBs.

Percentage of number of missing nodes when each

prefix set is searched, is presented in “Table 7”. For

example when all prefixes in prefix set 2 are inserted into

a FIB and all prefixes in the prefix set 1 are queried

afterwards, 12.03% of searches return negative answer.

Table 7. Percentage of missing nodes when searching for prefix sets

Inserted prefix set /

Searched prefix set
Prefix1 Prefix2 Prefix3

Prefix1 0 12.03% 19.3%

Prefix2 43.36% 0 10.56%

Prefix3 61.9% 36.83% 0

Prefix4 99.74% 99.72% 99.76%

Prefix5 99.54% 99.47% 99.5%

Prefix6 99.64% 99.6% 99.63%

Results of evaluation based on IPv6 prefix sets are

included and discussed in the following subsection.

4.4 IPv6 Results of Bloom-Bird and Discussion

As discussed in the previous subsection, three IPv6

prefix sets 1-3 are inserted into a FIB at three different

times in the two versions of standard Bird and Bloom-

Bird and all prefix sets 1-6 are queried afterwards.

Percentages of speedups of Bloom-Bird (fib_find() and

fib_route() functions) over standard Bird and FP error rate

are presented in “Tables 8, 9 and 10”, respectively. As

mentioned in the second sub-section, these results are

gained on a home PC with 2.88 MHz dual core CPU, 6

MB cache and 4 GB RAM which runs unmodified

(vanilla) Linux kernel 3.12.

Table 8. IPv6 Speedups of Bloom-Bird fib_find() over standard Bird -

Simple Search Function (*) means the same prefix set is inserted

Inserted prefix set /

Searched prefix set
Prefix1 Prefix2 Prefix3

Prefix1 (*) 8% 30% 33%

Prefix2 49% (*) 19% 32%

Prefix3 56% 46% (*) 18%

Prefix4 90% 91% 90%

Prefix5 70% 67% 60%

Prefix6 83% 80% 79%

Table 9. IPv6 Speedups Bloom-Bird of fib_route() over standard Bird - LPM

Search Function (*) means the same prefix set is inserted

Inserted prefix set /

Searched prefix set
Prefix1 Prefix2 Prefix3

Prefix1 (*) 10% 18% 22%

Prefix2 18% (*) 14% 22%

Prefix3 20% 24% (*) 17%

Prefix4 22% 63% 64%

Prefix5 54% 60% 62%

Prefix6 31% 62% 63%

Table 10. IPv6 False Positive Percentage of Bloom-Bird

(*) means the same prefix set is inserted

Inserted prefix set /

Searched prefix set
Prefix1 Prefix2 Prefix3

Prefix1 (*) 0 2.82% 5.58%

Prefix2 5.85% (*) 0 3.81%

Prefix3 7.27% 6.5% (*) 0

Prefix4 4.33% 8.21% 13.18%

Prefix5 3.67% 7.39% 12.07%

Prefix6 4.00% 7.8% 12.62%

In the “Table 8”, speedups of fib_find() function

which is responsible for simple searching for a given

prefix and length is presented. In the “Table 9”, speedups

of fib_route() function which is responsible for Longest

Prefix Matching (LPM) is presented (starting length for

LPM is set to 128 for all searches). In the last “Table 10”,

percentage of FP error rate is presented. Also there are 6

rows in the aforementioned tables, representing what

prefix set is searched. The smallest speedup is 8% and

biggest speedup is 91%. Smaller speedups are gained

when most prefixes are found after search (i.e. number of

existing nodes are bigger than missing nodes). On the

other hand, bigger speedups are gained when most

prefixes are not found after search.

As mentioned before, in order to guarantee FP rate

and performance, the Bloom-Bird calculates its BF array

size based on Eq. “(3)”. Therefore, for its default 18-bits

order (maximum number of inserted elements can be up

to n=2
18

), size of BF array can be calculated based on Eq.

“(3)” which leads to m=2
20

. Consequently, given these

values of m,n and k=2, Eq. “(1)” results 15% FP error rate.

Experimental results also prove the resulted value even in

lower values which “Table 10” shows the most FP error

rate resulted is 13.18 percent. Therefore, Bloom-Bird

handles its FP error rate even better than expected.

Bahrambeigy, Ahmadi & Fazlali, Towards Accelerating IP Lookups on Commodity PC Routers using Bloom Filter: Proposal of Bloom-Bird

32

When “Tables 8 and 9” are compared, the speedups of

fib_route() function are lower than their similar situation

in the fib_find(). That’s because of fib_find() tires just

once for given prefix and length but fib_route() tries W(n)

times in worst case which n is 128 for IPv6. Consequently,

fib_route() in most cases finds the best match.

Although comparing IPv6 scenario to IPv4 scenario is

not fair in general because of different number of prefixes

and length distribution of them, but speedup of IPv6

compared to IPv4 is a little lower and False Positive

errors are a little higher. The only reason for that can be

simple hashes that cannot distribute the IPv6 prefixes as

well as IPv4 prefixes that use fewer bits to represent

prefixes. Therefore, False Positive errors because of

simple IPv6 hashes become bigger and speedups become

lower compared to IPv4 scenario.

5. Conclusion

The paper showed and presented another application

of Bloom filter on a practical open-source router. The BF

implementation on Bird’s FIB data structure showed that

it can help Bird to search and route faster when number of

inserted prefixes into a FIB becomes huge. Bloom-Bird

which utilizes a Bloom filter in its architecture, evaluated

using various prefix sets gathered from real routers traces

and also manually generated prefix sets to make the tests

more accurate and reliable. Bloom-Bird employs a

Bloom-filter in Bird’s FIB data structure in order to

accelerate the IP lookups when FIB’s linked list chains

become long. Comparison using different prefix sets

showed that up to 93% speedup is gained when most

searches return negative answer. This improvement is

achieved at the cost of Bloom filter space overhead.

Moreover, it is showed how Bloom-Bird can handle its

FP error rate when number of inserted prefixes increases

by scaling the Bloom filter capacity. The results presented

and discussed for both IPv4 and IPv6 prefix sets.

Regardless whether Bloom filter is going to be used as

an extra stage before hashing mechanism or other

searching data structures (e.g. trie), it can help to avoid

traversing chains and paths when result of a search is

negative. Therefore, our software based approach is

applicable to any other software based routers to

accelerate their IP lookups when their FIBs become huge.

References
[1] Y. Zhu, Y. Deng, and Y. Chen. "Hermes: an integrated

CPU/GPU microarchitecture for IP routing," presented at

the 48th Conf. Design Automation Conference, San Diego,

California, 2011.

[2] S. Han, K. Jang, K. Park, and S. Moon. "PacketShader: a

GPU-accelerated software router," ACM SIGCOMM

Computer Communication Review, vol. 41, pp. 195-206, 2010.

[3] O. Filip. “The BIRD Internet Routing Daemon Project” Internet:

www.bird.network.cz/?index, Jun. 15, 2013 [Mar. 7, 2017].

[4] P. Jakma. “Quagga Software Routing Suite.” Internet:

www.nongnu.org/quagga, Dec. 6, 2015 [Mar. 7, 2017].

[5] M. Handley, O. Hodson, and E. Kohler. "XORP: an open

platform for network research," ACM SIGCOMM Computer

Communication Review, vol. 33, pp. 53-57, 2003.

[6] B. Bloom. "Space/time trade-offs in hash coding with

allowable errors," Communications of the ACM, vol. 13,

pp. 422-426, 1970.

[7] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz. "Theory

and practice of bloom filters for distributed systems,"

Communications Surveys & Tutorials, IEEE, vol. 14, pp.

131-155, 2012.

[8] L. Fan, P. Cao, J. Almeida, and A. Broder. "Summary

cache: a scalable wide-area web cache sharing protocol,"

IEEE/ACM Transactions on Networking (TON), vol. 8, pp.

281-293, 2000.

[9] C. Rothenberg, C. Macapuna, F. Verdi, and M. Magalhães. "The

deletable bloom filter: a new member of the bloom family," IEEE

Communications Letters, vol. 14, pp. 557-559, 2010.

[10] A. Broder and M. Mitzenmacher. "Network Applications

of Bloom Filters: A Survey," Internet Mathematics, vol. 1,

pp. 636-646, 2002.

[11] M. Ahmadi and S. Wong. "Modified collision packet

classification using counting Bloom filter in tuple space,"

presented at the 25th Int. Multi-Conference: Parallel and

distributed computing and networks, Innsbruck, Austria, 2007.

[12] L. Hyesook and L. Nara. "Survey and proposal on binary

search algorithms for longest prefix match,"

Communications Surveys & Tutorials, IEEE, vol. 14, pp.

681-697, 2012.

[13] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor.

"Longest prefix matching using bloom filters," presented at

the Conf. on Applications, technologies, architectures, and

protocols for computer communications, Karlsruhe,

Germany, 2003.

[14] S. Sahni and K. S. Kim. "Efficient construction of multibit

tries for IP lookup," IEEE/ACM Transactions on

Networking, vol. 11, pp. 650-662, 2003.

[15] K. Lim, K. Park, and H. Lim. "Binary search on levels

using a Bloom filter for IPv6 address lookup," presented at

the 5th ACM/IEEE Symposium on Architectures for

Networking and Communications Systems, Princeton, New

Jersey, 2009.

[16] S. Haoyu, H. Fang, M. Kodialam, and T. V. Lakshman.

"IPv6 Lookups using Distributed and Load Balanced

Bloom Filters for 100Gbps Core Router Line Cards," in

INFOCOM 2009, IEEE, 2009, pp. 2518-2526.

[17] J. Bonwick. "The slab allocator: an object-caching kernel

memory allocator," presented at the Technical Conf. on

USENIX Summer 1994, Boston, Massachusetts, 1994.

[18] D. Meyer. “RouteViews IPv4 BGP RIBs. 2008, 2010,

2013.”, Internet: www.routeviews.org/bgpdata Feb. 28,

2017 [Mar. 7, 2017].

http://www.bird.network.cz/?index
http://www.nongnu.org/quagga
http://www.routeviews.org/bgpdata

Journal of Information Systems and Telecommunication, Vol. 5, No. 1, January-March 2017 33

[19] D. Meyer. “RouteViews IPv6 BGP RIBs. 2011, 2012,

2013.”, Internet: www.routeviews.org/bgpdata Feb. 28,

2017 [Mar. 7, 2017].

[20] V. Kotal, “IPv6 prefix generator.”, Internet:

www.github.com/vladak/ipv6gen Jan. 29, 2011 [Mar. 7, 2017].

Bahram Bahrambeigy received his B.Sc degree in Information
Technology Engineering and M.Sc degree in Computer Networks
Engineering both from Islamic Azad University (IAU) in 2011 and
2013, respectively. He is currently working at Pishgaman Tosee
Ertebatat (PTE) Tehran as Datacenter Engineer. His research
interests include Computer Networks, Software Routers and
High-performance Computing.

Mahmood Ahmadi received the B.Sc degree in Computer
engineering from Isfahan University, Isfahan, Iran in 1995. He
received the M.Sc degrees in Computer architecture and
engineering from Tehran Polytechnique University, Tehran, Iran
in 1998. From 1999 to 2005, he was a faculty member at Razi

university in Kermanshah in Iran. In October 2005, he joined the
Faculty of Electrical Engineering, Mathematics, and Computer
Science (EEMCS), Delft University of Technology, Delft, The
Netherlands, as fulltime Ph.D student. He got his Ph.D in May
2010. His research interests include Computer architecture,
network processing, Bloom filters, software defined networking,
and high-performance computing. He is working as an assistant
professor at Computer Engineering Department in Razi University
of Kermanshah, Iran.

Mahmood Fazlali Mahmood Fazlali received B.Sc in computer
engineering from Shahid Beheshti University (SBU) in 2001. Then
he received M.Sc from University of Isfahan in 2004, and Ph.D
from SBU in 2010 in computer architecture. He performed
researches on reconfigurable computing systems in computer
engineering lab of Technical University of Delft (TUDelft) as a
postdoc researcher. Now, he is working as an assistant professor
at computer science department at SBU. His research interest
includes high performance computing, parallel processing,
reconfigurable computing and computer aided design.

http://www.routeviews.org/bgpdata
http://www.github.com/vladak/ipv6gen

