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Abstract
Information Theory (IT) has been used in Machine Learning (ML) from early days of this field. In the last decade, advances
in Deep Neural Networks (DNNs) have led to surprising improvements in many applications of ML. The result has been a
paradigm shift in the community toward revisiting previous ideas and applications in this new framework. Ideas from IT are
no exception. One of the ideas which is being revisited by many researchers in this new era, is Information Bottleneck (IB);
a formulation of information extraction based on IT. The IB is promising in both analyzing and improving DNNs. The goal
of this survey is to review the IB concept and demonstrate its applications in deep learning. The information theoretic nature
of IB, makes it also a good candidate in showing the more general concept of how IT can be used in ML. Two important
concepts are highlighted in this narrative on the subject, i) the concise and universal view that IT provides on seemingly
unrelated methods of ML, demonstrated by explaining how IB relates to minimal sufficient statistics, stochastic gradient
descent, and variational auto-encoders, and ii) the common technical mistakes and problems caused by applying ideas from
IT, which is discussed by a careful study of some recent methods suffering from them.
Keywords: Machine Learning; Information Theory; Information Bottleneck; Deep Learning; Variational Auto-Encoder.

1. Introduction
The area of information theory was born by Shannon’s land-
mark paper in 1948 [1]. One of the main topics of IT is com-
munication; which is sending the information of a source
in such a way that the receiver can decipher it. Shannon’s
work established the basis for quantifying the bits of in-
formation and answering the basic questions faced in that
communication. On the other hand, one can describe the
machine learning as the science of deciphering (decoding)
the parameters of a true model (source), by considering a
random sample that is generated by that model. In this view,
it is easy to see why these two fields usually cross path each
other. This dates back to early attempts of statisticians to
learn parameters from a set of observed samples; which was
later found to have interesting IT counterparts [2]. Up until
now, IT is used to analyze statistical properties of learning
algorithms [3, 4, 5].

After the revolution of deep neural networks [6], the lack
of theory that is able to explain its success [7] has moti-
vated researchers to analyze (and improve) DNNs by using
IT observations. The idea was first proposed by [8] who
made some connections between the information bottleneck
method [9] and DNNs. Further experiments showed evi-
dences that support the applicability of IB in DNNs [10].
After that, many researchers tried to use those techniques
to analyze DNNs [11, 12, 10, 13] and subsequently improve
them [14, 15, 16].

In this survey, in order to follow current research head-

lines, the main needed concepts and methods to get more
familiar with the IB and DNN are covered. In Section 2, the
historical evolution of information extraction methods from
classical statistical approaches to IB are discussed. Sec-
tion 3, is devoted to the connections between IB and recent
DNNs. In Section 4 another information theoretic approach
for analyzing DNNs is introduced as an alternative to IB.
Finally, Section 5 concludes the survey.

2. Evolution of Information Extraction
Methods

A shared concept in statistics, information theory, and ma-
chine learning is defining and extracting the relevant in-
formation about a target variable from observations. This
general idea, was presented from the early days of modern
statistics. It then evolved ever since taking a new form in
each discipline which arose through time. As is expected
from such a multidisciplinary concept, a complete under-
standing of it requires a persistent pursuit of the concept in
all relevant fields. This is the main objective of this section.
In order to make a clear view, the methods are organized in
a chronological order with the emphasis on their cause and
effect; i.e., why each concept has been developed and what
has it added to the big picture.

In the reminder of this section, first the notations are de-
fined and after that the evolution of methods from sufficient
statistics to IB is explained.
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2.1 Preliminaries and Notations

Consider X ∈X and Y ∈ Y as random variables with the
joint distribution function of p(x,y), where X and Y are
called input and output spaces, respectively. Here, the real-
ization of each Random Variable (r.v.) is represented by the
same symbol in the lower case. The conditional entropy
of X , given Y , is defined as H(X |Y ) = E[− log p(X ,Y )]
and their Mutual Information (MI) is given by I(X ;Y ) =
E[log p(X ,Y )

p(X)p(Y ) ]. There are also more technical definitions
for MI allowing it to be used in cases that the distribution
function p(x,y) is singular [17, 18]. An important property
of MI is that it is invariant under bijective transforms f and
g; i.e., I(X ;Y ) = I( f (X),g(Y )) [19].

A noisy channel is described by a conditional distribution
function p(x̃|x), in which x̃ ∈ X̃ is the noisy version of
X . In the rate distortion function, the distortion function
d : X × X̃ → R is given and the minimum required bit-
rate for a fixed expected distortion is studied. Then

R(D) = min
p(x̃|x)

s.t.E[d(X ,X̃)]≤D

I(X̃ ;X). (1)

2.2 Minimal Sufficient Statistics

A core concept in statistics is defining the relevant informa-
tion about a target Y from observations X . One of the first
mathematical formulations proposed for measuring the rel-
evance, is the concept of sufficient statistic. This concept is
defined below [20].

Definition 1 (Sufficient Statistics). Let Y ∈ Y be an un-
known parameter and X ∈X be a random variable with
conditional probability distribution function p(x|y). Given
a function f : X → S , the random variable S = f (X) is
called a sufficient statistic for Y if

∀x ∈X ,y ∈ Y :
P(X = x|Y = y,S = s) = P(X = x|S = s).

(2)

In other words, a sufficient statistic captures all the infor-
mation about Y which is available in X . This property is
stated in the following theorem [21, 2].

Theorem 1 Let S be a probabilistic function of X. Then, S
is a sufficient statistic for Y if and only if (iff)

I(S;Y ) = I(X ;Y ). (3)

Note that in many classical cases that one encounters in
point estimation, it is assumed that there is a family of dis-
tribution functions that is parameterized by an unknown pa-
rameter θ and furthermore N Independent and Identically
Distributed (i.i.d.) samples of the target distribution func-
tion are observed. This case fits the definition by setting
Y = θ and considering the high dimensional random vari-
able X = {X (i)}N

i=1 that contains all observations.
A simple investigation shows that the sufficiency defini-

tion includes the trivial identity statistic S = X . Obviously,

Table 1: Markov chains corresponding to conditions that form a Minimal
Sufficient Statistic, along with its enforced information inequality.

Markov Chain Data Processing Inequality

Statistic Y X S I(S;Y )≤ I(X ;Y )

Sufficient Y SS X I(SS;Y )≥ I(X ;Y )

Minimal X SS MSS ∀ SS : I(MSS;X)≤ I(SS;X)

such statistics are not helpful, as copying the whole signal
cannot be called ”extraction” of relevant information. Con-
sequently, one needs a way to restrict the sufficient statistic
from being wasteful in using observations. To address this
issue, authors of [22] introduced the notion of minimal suf-
ficient statistics. This concept is defined below.

Definition 2 (Minimal Sufficient Statistic) A sufficient
statistic S is said to be minimal if it is a function of all other
sufficient statistics

∀T ;T is sufficient statistic⇒∃g;S = g(T ). (4)

It means that a Minimal Sufficient Statistic (MSS) has the
coarsest partitioning of the input variable X . In other words,
an MSS tries to group the values of X together in as few
number of partitions as possible, while making sure that
there is no information loss in the process. The following
theorem describes the relation between minimal sufficient
statistics and mutual information[21].

Theorem 2 Let X be a sample drawn from a distribution
function that is determined by the random variable Y . The
statistic S is an MSS for Y iff it is a solution of the optimiza-
tion process

min
T :sufficiet statistic

I(X ;T ). (5)

By using Theorem 1, the constraint of this optimization
problem can be written by information theory terms, as

min
T :I(T ;Y )=I(X ;Y )

I(X ;T ). (6)

It shows that MSS is the statistic that have all the avail-
able information about Y , while retaining the minimum pos-
sible information about X . In other words, it is the best
compression of X , with zero information loss about Y .

In Table 1, the components of MSS are presented in
a concise way by using Markov chains. Note that these
Markov chains should hold for every possible statistic S,
sufficient statistic SS, and minimal sufficient tatistic MSS.
By these three Markov chains and the information inequal-
ities corresponding to each, it is easy to verify Theorems 1
and 2. By using the two first inequalities, is easily proved
that I(SS;Y ) = I(SS;X) . The last inequality shows that
MSS should be the SS with minimal I(SS;X).
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In most practical problems where X = {(X (i)}N
i=1 is an N-

dimensional data, one hopes to find a (minimal) sufficient
statistic S in such a way that its dimension does not depend
on N. Unfortunately, it is found to be impossible for almost
all distributions (except the ones belonging to the exponen-
tial family) [21, 23].

2.3 Information Bottleneck

To tackle this problem, Tishby presented the IB method to
solve the Lagrange relaxation of the optimization function
(6), by[9]

min
p(x̃|x)

I(X̃ ;X)−β I(X̃ ;Y ) (7)

where X̃ is the representation of X , and β is a positive pa-
rameter that controls the trade-off between the compression
and preserved information about Y . For β <= 1, the triv-
ial case where X̃ ⊥⊥ X is a solution. The reason is that
the data processing inequality enforces I(X̃ ;X)≥ I(X̃ ;Y ) =
((1−β )+β )I(X̃ ;Y ). Therefore, the value (1−β )I(X̃ ;Y )
is a lower bound for the objective function of optimization
problem (7). For β ≥ 1, this lower bound is minimized
by setting I(X̃ ;Y ) = 0. It is achieved by simply choosing
I(X̃ ;X) = 0.

As such, the solution starts from I(X̃ ;X) = I(X̃ ;Y ) = 0,
and by increasing β , both I(X̃ ;X) and I(X̃ ;Y ) are increased.
At the limit, β → ∞, this optimization function is equiva-
lent to (5) [21]. Note that in IB, the optimization function
is performed on conditional distribution functions p(x̃|x).
Therefore, the solution is no longer restricted to determinis-
tic statistics T = f (X). In general, the optimization function
(7) does not necessarily have a deterministic solution. This
is true even for simple cases with two binary variables [16].
The IB provides a quite general framework with many ex-
tensions (there are variations of this method for more than
one variable [24]). But, since there is no evident connection
between these variations and DNNs, they are not covered in
this survey.

Tishby et al. showed that IB has a nice rate-distortion
interpretation, using the distortion function d(x, x̃) =
KL(p(y|x) ‖ p(y|x̃)) [25]. It should be noted that this does
not exactly conform to the classical rate-distortion settings,
since here the distortion function implicitly depends on the
p(x̃|x) which is being optimized. They provided an al-
gorithm similar to the well-known Blahut-Arimoto rate-
distortion algorithm [26, 27] to solve the IB problem.

Till now, it was considered that the joint distribution
function of X and Y is known. But, it is not the case in ML.
In fact, if one knows the joint distribution function, then the
problem is usually as easy as computing an expectation on
the conditional distribution function; e.g., f (x) = Ep(y|x)[Y ]
for regression and Ep(y|x)[1(Y = c)];c ∈ Y for classifica-
tion. Arguably, one of the main challenges of ML is to
solve the problem when one has the access to the distri-
bution function through a finite set of samples.

Interestingly, it was found that the value of β , introduced
as a Lagrange relaxation parameter in (7), can be used to

control the bias-variance trade-off in cases for which the
distribution function is not known and the mutual infor-
mation is just estimated from a finite number of samples.
It means that instead of trying to reach the MSS by set-
ting β → ∞, when the distribution function is unknown,
one should settle for a β ∗ < ∞ which gives the best bias-
variance trade-off [21]. The reason is that the error of
estimating the mutual information from finite samples is

bounded by O( |X̃ | logm√
m ), where |X̃ | is the number of pos-

sible values that the random variable X̃ can take (see The-
orem 1 of [21]). The |X̃ | has a direct relation with β :
small β means more compressed X̃ , meaning that less dis-
tinct values are required to represent X̃ . This is in line with
the general rule that simpler models generalize better. As
such, there are two opposite forces in play, one trying to in-
crease β to make the Lagrange relaxation of optimization
function (7) to be more accurate, while the other tries to
decrease β in order to control the finite sample estimation
errors of I(X̃ ;X) and I(X̃ ;Y ). The authors of [21] also tried
to make some connections between the IB and the classi-
fication problem. Their main argument is that in equation
(7), I(X̃ |Y ) can be considered as a proxy for the classifica-
tion error. They showed that if two conditions are met, the
miss-classification error is bounded from above by I(X̃ |Y )
. These conditions are: i) the classes have equal probabil-
ity, and ii) each sample is composed of a lot of components
(as in the document (text) classification setting). The latter
is equivalent to the general technique in IT where one can
neglect small probabilities when dealing with typical sets.
They also argued that I(X̃ ;X) is a regularization term that
controls the generalization-complexity trade-off.

The main limitation of their work is that they considered
both X and Y to be discrete. This is not the case in many ap-
plications of ML; including image and speech processing.
While there are extensions to IB allowing to work with con-
tinuous random variables [28], their finite sample analysis
and the connections to ML applications are less studied.

3. Information Bottleneck and Deep Learning
After the revolution of DNNs, which started by the work of
[29], in various areas of ML the state-of-the-art algorithms
were beaten by DNN alternatives.While most of the ideas
used in DNNs existed for decades, the recent success at-
tracted unprecedented attention of the community. In this
new paradigm, both practitioners and theoreticians found
new ideas to either use DNNs to solve specific problems or
use previous theoretical tools to understand DNNs.

Similarly, the interaction of IB and DNN in the literature
can be divided in two main categories. The first is to use
the IB theories in order to analyze DNNs and the other is to
use the ideas from IB to improve the DNN-based learning
algorithms. The remaining of this section is divided based
on these categories.

Section 3.1 is devoted to the application of IB in analyz-
ing the usual DNNs, which is mainly due to the conjecture

 

Journal of Information Systems and Telecommunication, Vol. 6, No. 3, July-September 2018 121 



that Stochastic Gradient Descent, the de facto learning al-
gorithm used for DNNs, implicitly solves an IB problem. In
Section 3.2, the practical applications of IB for improving
DNNs and developing new structures are discussed. The
practical application is currently mostly limited to Varia-
tional Auto-Encoders (VAEs).

3.1 Information Bottleneck and Stochastic Gradient
Descent

From theoretical standpoint, the success of DNNs is not
completely understood. The reason is that many learning
theory tools analyze models with a limited capacity and find
inequalities restricting the deviation of train test statistics.
But, it was shown that commonly used DNNs have huge ca-
pacities that make such theoretical results to be inapplicable
[7, 4]. In recent years, there were lots of efforts to math-
ematically explain the generalization capability of DNNs
by using variety of tools. They range from attributing it to
the way that the SGD method automatically finds flat local
minima (which are stable and thus can be well generalized)
[30, 31, 32, 33], to efforts trying to relate the success of
DNNs to the special class of hierarchical functions that they
generate [34]. Each of these categories has its critics and
the problem is still under debate (e.g., [35] argues that flat-
ness can be changed arbitrarily by re-parametrization and
the direct relation between generalization and flatness is not
generally true). In this survey, the focus is on a special set
of methods that try to analyze DNNs by information theory
results (see [36] for a broader discussion).

Tishby et al. used ideas from IB to formulate the goal of
deep learning as an information theoretic trade-off between
compression and prediction [8]. In that view, an NN forms a
Markov chain of representations, each trying to refine (com-
press) the representation while preserving the information
about the target. Therefore, they argued that DNN is auto-
matically trying to solve an IB problem and the last layer is
the optimal representation x̃ that is to be found. Then, they
used the generalization theories of IB (discussed in 2.3) to
explain the success of DNNs. One of their main contri-
butions is the idea to use the information plane diagrams
showing the inside performance of a DNN (see Figure 1b).
The information plane is a 2D diagram with I(X̃ ;X) and
I(X̃ ;Y ) as the x and y axis, respectively. In this diagram
, each layer of the network is represented by a point that
shows how much information it contains about the input
and output.

Later, they also practically showed that in learning DNNs
by a simple SGD (without regularization or batch nor-
malization), the compression actually happens [10]. The
Markov chain representation that they used and their results
are shown in Figure 1. As the SGD proceeds, by tracking
each layer on the information plane, they reported observ-
ing the path A in Figure 1b. In this path, a deep hidden
layer starts from point (0,0). The justification is that at
the beginning of SGD, where all weights are chosen ran-
domly, the hidden layer is meaningless and does not hold

any information about either of X or Y . During the train-
ing phase, as the prediction loss is minimized, I(X̃ ;Y ) is
expected to increase (since the network uses X̃ to predict
the label, and its success depends on how much informa-
tion X̃ has about Y ). But, changes in I(X̃ ;X) are not easy
to predict. The surprising phenomena that they reported is
that at first I(X̃ ;X) increases (called the learning phase).
But, at some point a phase transition happens (presented by
a star in Figure 1b) and I(X̃ ;X) starts to decrease (called
the compression phase). It is surprising because the min-
imized loss in deep learning does not have any compres-
sion term. By experimental investigations, they also found
that compression happens in later steps of SGD when the
empirical error is almost zero and the gradient vector is
dominated by its noisy part (i.e., observing a small gradi-
ent mean but a high gradient variance). By this observa-
tion, they argued that after reaching a low empirical error,
the noisy gradient descent forms a diffusion process which
approaches the stationary distribution that maximizes the
entropy of the weights, under the empirical error constraint.
They also explained how deeper structures can help SGD to
faster approach to the equilibrium. In summary, their results
suggested that the reason behind the DNN success, is that it
automatically learns short descriptions of samples, which in
turn controls the capacity of model. They reported results
for both synthesis datasets (true mutual information values)
and real datasets (estimated mutual information values).

Saxe et al. [13] further investigated this phenomena on
more datasets and different kinds of activation functions.
They observed the compression phase just in cases for
which a saturating activation function is used (e.g., sigmoid
or tanh). They argued that the explanation of diffusion pro-
cess is not adequate to explain all different cases; e.g., for
Relu activation which is commonly used in the literature,
they usually could not see any compression phase (path B
in Figure 1b). It should be noted that their observations do
not take the effect of compression completely out of pic-
ture, rather they just reject the universal existence of an ex-
plicit compression phase at the end of the training phase.
As shown in Figure 1b, even though there is no compres-
sion phase in Path B, the resulting representation is still
compressed compared to X . This compression effect can
be attributed to the initial randomness of the network rather
than an explicit compression phase. They also noticed that
the way that the mutual information is estimated is crucial
in the process. One of the usual methods for mutual in-
formation estimation is binning. In that approach, the bin
size is the parameter to be chosen. They showed that for
small enough bin sizes, if the precision error of arithmetic
calculations is not involved, there will not be any informa-
tion loss to begin with (Path C in Figure 1b). The reason
is that when one projects a finite set of distinct points to a
random lower dimensional space, the chance that any two
points get mixed is zero. Even though this problem is seem-
ingly just an estimation error caused by a low number of
samples in each bin (and thus does not invalidate synthesis
data results of [10]), it is actually connected to a more fun-
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(a) (b)
ˆFigure 1: Information plane diagram of DNNs. (a) Markov chain representation of a DNN with m hidden layers. [Note that the predicted label Y has access

to Y only through X .] (b) Path hidden layers undergo during SGD training in information plane. Three possible paths under debate by researchers are
represented by A, B, and C.

damental problem. If one removes the binning process and
deals with true values of mutual information, serious prob-
lems will arise when using IB to study common DNNs on
continuous variables. The problem is that in usual DNNs,
for which the hidden representation has a deterministic re-
lation with inputs, the IB functional of optimization (7) is
infinite for almost all weight matrices and thus the problem
is ill-posed. This concept was further investigated in [37].

Even though the problem was not explicitly addressed
until recently, there are two approaches used by researchers
that automatically tackle this problem. As mentioned be-
fore, the first approach, used by [8], applies binning tech-
niques to estimate the mutual information. This is equiva-
lent to add a (quantization) noise, making the IB functional
limited. But, in this way, the noise is added just for the
analysis process and does not affect the NN. As noted by
[13], unfortunately some of the advertised characteristics
of mutual information, namely the information inequality
for layers and the invariance on reparameterization of the
weights, does not hold any more.

The second approach is to explicitly add some noise to
the layers and thus make the NN truly stochastic. This idea
was first discussed by [10] as a way to make IB to be biased
toward simpler models (as is usually desired in ML prob-
lems). It was later found that there is a direct relationship
between the SGD and variational inference [38]. On the
other hand, the variational inference has a ”noisy computa-
tion” interpretation [16]. These results showed that the idea
of using stochastic mappings in NNs has been used much
earlier than the recent focus on IB interpretations. In the
light of this connection, researchers tried to propose new
learning algorithms based on IB in order to more explicitly
take the compression into account. These ideas are strongly
connected to Variational Auto-Encoders (VAEs) [39]. The
denoising auto-encoders [40, 41] also use an explicit noise
addition and thus can be studied in the IB framework. The
next section is devoted to the relation between IB and VAE
which recently has been a core concept in the field .

3.2 Information Bottleneck and Variational
Auto-Encoder

Achille et al. [16] introduced the idea of information
dropout in correspondence to the commonly used dropout

technique [6]. Starting from the loss functional in the op-
timization function (7) and noting that I(X̃ ;Y ) = H(Y )−
H(Y |X̃), one can rewrite the problem as

min
p(x̃|x)

I(X ; X̃)+βH(Y |X̃). (8)

Moreover, the terms can be expanded as per sample loss of

H(Y |X̃) = Ep(x,y)
[
Ep(x̃|X)[− log(p(Y |X̃))]

]
I(X ; X̃) = Ep(x) [KL(p(x̃|X) ‖ p(x̃))] (9)

where KL denotes the Kullback-Leibler divergence. The
expectations in these two equations can be estimated by
a sampling process. For distribution functions p(x) and
p(x,y), the training samples D = {(x(i),y(i))}N

i=1 are already
given. Therefore, the loss function of IB can be approxi-
mated as

L =
1
N

N

∑
i=1

Ep(x̃|x(i))[− log(p(y(i)|x̃))]

+βKL(p(x̃|x(i)) ‖ p(x̃)).

(10)

It is worth noting that if we let x̃ to be the output of NN,
the first term is the cross entropy (which is the loss function
usually used in deep learning). The second term acts like
a regularization term to prevent the conditional distribution
function p(x̃|x) from being too dependent to the value of
x. As noted by [16], this formulation reveals interesting
resemblance to Variational Auto-Encoder (VAE) presented
by [39]. The VAE tries to solve the unsupervised problem
of reconstruction, by modeling the process which has gen-
erated each data from a (simpler) random variable x̃ with a
(usually fixed) prior p0(x̃). The goal is to find the generative
distribution function pθ(x|x̃) and also a variational approxi-
mation pφ (x̃|x). This is done by minimizing the variational
lower-bound of the marginal log-likelihood of the training
data, given by [16]

Lθ ,φ =
1
N

N

∑
i=1

Epφ (x̃|x(i))[− log(pθ (x(i)|x̃))]

+KL(pφ (x̃|x(i)) ‖ p0(x̃)).

(11)

Comparing this with equation (10), it is evident that VAE
can be considered as an estimation for a special case of IB
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when: i) Y = X , ii) β = 1, iii) the prior distribution func-
tion is fixed p(x̃) = p0(x̃), and iv) the distribution functions
p(x̃|x) and p(x|x̃) are parameterized by φ and θ , respec-
tively. These parameters are optimized separately as sug-
gested by the variational inference (note that in IB, the at-
tention is on p(x̃|x), and assuming that p(x,y) is given, the
values of p(x̃) and p(y|x̃) are determined from that). It is
worth noting that the ii and iii restrictions are crucial. The
reason is that just setting X = Y and β = 1, without any
other restrictions, would make the objective function (7) to
be a constant, making every p(x̃|x) to be a solution. Even
if β 6= 1, the trivial loss function (1−β )I(X̃ ;X) is obtained
which is minimized either for x = x̃ (when β > 1) or x⊥⊥ x̃
(when β < 1). Neither of these solutions is desired in repre-
sentation learning (for another view on this matter, see the
discussion of [42] on ”feasible” vs ”realizable” solutions).

A similar variational approach, is used to solve the IB
optimization process (10), which is a more general setting
with β 6= 1 and X 6= Y [16].

Another concept to note is that despite the connection
between IB and VAE, some of VAE issues that researchers
have reported do not directly apply to IB. In fact, we think
that it is helpful to use the IB interpretation to understand
the VAE problems to remedy them. For example, one of
the improvements over the original VAE, is β -VAE [45].
They found that having β > 1 leads to a better performance
compared to the original configuration of VAE which is re-
stricted to β = 1. This phenomena can be studied by using
its counterpart results in IB. As mentioned in Section 2.3, β

controls the bias-variance trade-off in case of finite training
set. Therefore, one should search for β ∗ which practically
does the best in preventing the model from over-fitting. The
same argument might be applied to VAE.

Another issue in VAE, which has attracted the attention
of many researchers [42, 43, 46, 47] , is that when the family
of decoders pθ (x|x̃) is too powerful, the loss function (11)
can be minimized by just using the decoder and completely
ignoring the latent variable; i.e. pθ (x|x̃) = p(x). In this
case, the optimization function (11) will be decomposed
into two separate terms, where the first term just depends
on θ and the second term just depends on φ . As a result, the
second term will be minimized by setting pφ (x̃|x) = p0(x̃).
Therefore, x and x̃ will be independent, which is obviously
not desired in a feature extraction problem. This problem
does not exist in the original IB formulation, in which the
focus is on pφ (x̃|x) and p(x|x̃) ∝ p(x̃|x)p(x) is computed
without any degrees-of-freedom (no parameter θ to opti-
mize). It is in contrast with the VAE settings where the dis-
cussion starts from pθ (x|x̃) and later pφ (x̃|x) is introduced
in variational inference. Note that having a strong family of
encoders pφ (x̃|x), does not make any problem as long as it is
adequately regularized by KL(pφ (x̃|x(i)) ‖ p0(x̃)). It should
be added that even though IB does not inherently suffer
from the ”too strong decoder” problem, the current meth-
ods which are based on the variational distribution and op-
timization of both θ and φ are not immune to it [14, 12, 16].
This is currently an active research area and we believe the

IB viewpoint will help to develop better solutions to it.
In Figure 2, the summary of existing methods and how

they evolved trough time, is represented in a hierarchical
structure. Note that the solution based on variational tech-
niques [16] bypasses all the limitations that are faced in pre-
vious sections; i.e., meaning that it is not limited to a spe-
cific family of distributions, does not need the distribution
function to be known, and also works for continuous vari-
ables. As it is represented in this figure, while the recent
methods are capable of solving more general problems, the
theoretical guarantees for them are more scarce.

4. Beyond Information Bottleneck
All the methods discussed till now were using IB which
uses the quantity I(X ;T ) to control the variance of the
method (see Section 2.3). While this approach is used
successfully in many applications, its complete theoretical
analysis in the general case is difficult. In this section, a
different approach based on mutual information which re-
cently has attracted the attention of researchers is presented.
In this new view, instead of looking at I(X ;T ) as the notion
of complexity, one considers I(S;A (S)). Here S is the set of
all training samples, and A is the learning algorithm which
uses training points to calculate a hypothesis h.

In this approach, not only the mutual information of a
single sample X and its representation is considered, but
also the mutual information between all of the samples and
the whole learned model is studied.

Following recent information theoretic techniques from
[48, 49, 50], authors of paper [3] used the following notion
to prove the interesting inequality

P [|errtest− errtrain|> ε]< O
(

I(S;A (S))
nε2

)
, (12)

where errtest and errtrain are the test (true) error and the train-
ing (empirical) error of the hypothesis A (S), respectively,
n is the training size, and ε > 0 is a positive real number.

The intuition behind this inequality is that, the more a
learning algorithm uses bits of the training set, there is po-
tentially more risk that it will overfit to it. The interesting
property of this inequality is that the mutual information
between the whole input and output of the algorithm, de-
pends deeply on all the aspects of the learning algorithm. It
is in contrast with many other approaches that use the prop-
erties of the hypotheses space H to bound the generaliza-
tion gap, and usually the effect of final hypothesis chosen
by the learning algorithm is blurred away due to the usage
of a uniform convergence in proving bounds; like in the
Vapnik-Chervonenkis theory [51]. In paper [52], the chain-
ing method [53] was used to further improve the inequality
(12) to also take into account the capacity of the hypotheses
space.

Though the inequality 12 seems appealing as it directly
bounds the generalization error by the simple-looking in-
formation theoretic term I(S;A (S)), unfortunately the cal-
culation/estimation of this term is even harder than I(X ;T )
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Figure 2: Schematic review of main information extraction methods discussed in this survey, representing the evolution of algorithms through time. 
Moving from left to right, the methods are sorted in a chronological order. This figure shows that recent algorithms are applicable in more general cases
(but usually provide less theoretical guarantees).

which was used in IB. This made it quite challenging to ap-
ply this technique in real world machine learning problems
where the distribution is unknown and the learning algo-
rithms is usually quite complex [54, 4].

To the best knowledge of the authors, the only attempt
made to use this technique to analyze the deep learning pro-
cess is the recent article [55]. In that work, authors argue
that as the dataset S goes trough DNN layers 1 . . .m, the
intermediate sequence of datasets (S`)m

`=1 are formed and
I(S`;W ) is a decreasing function of ` (here W is the set of
all weights in the DNN). They further argue that this can
be used along the inequality (12) to show that deeper ar-
chitectures have less generalization error. A major problem
with their analysis is that they used the Markov assumption
W – S – S1 – S2 ... Sm−1 – Sm. This assumption does not
generally hold in a DNN. Because for calculating the S`,
a direct usage of W is needed (more precisely the weights
up to layer ` are used). Therefore, it seems that the correct
application of this technique in analyzing DNNs requires a
more elaborate treatment which is hopped to be released in
near future.

5. Conclusion
A survey on the interaction of IB and DNNs was given.
First, the headlines of the prolong history of using the infor-
mation theory in ML was presented. The focus was on how
the ideas evolved over time. The discussion started from
MSS which is practically restricted to distributions from
exponential family. Then the IB framework and the Blahut-
Arimoto algorithm were discussed which do not work for
unknown continuous distributions. After that methods
based on variational approximation introduced which are
applicable to quite general cases. Finally, another more
theoretically appealing usage of information theory was in-

troduced, which used the mutual information between the
training set and the learned model to bound the generaliza-
tion error of a learning algorithm. Despite its theoretical
benefits, it was shown that its application in understanding
DNNs, is challenging.

During this journey, it was revealed that how some seem-
ingly unrelated areas have hidden relations to the IB. It was
also shown that how the mysterious generalization power of
SGD (which is the De facto learning method of DNNs) is
hypothesized to be caused by the implicit IB compression
property which is hidden in SGD. Also, the recent success-
ful unsupervised method VAE was found to be a special
case of the IB when solved by employing the variational
approximation.

In fact, the profound and seemingly simple tools that the
information theory provides bring some traps. As the un-
derstanding of these pitfalls are as important, they were also
discussed in this survey. It could be seen that how seem-
ingly harmless information theoretic formulas can make im-
possible situations. Two major discussed cases were: i) us-
ing the mutual information to train continuous determinis-
tic DNNs, which made the problem ill-posed, and ii) using
variational approximations without restricting the space of
solutions can easily result in meaningless situations. The
important lesson learned from these revelations was how
the ideas from the information theory can give a unified
view to different ML concepts. We believe that this view
is quite helpful to understand the shortcomings of methods
and to remedy them.
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