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Abstract  
One of the challenging problems in directional sensor networks is maximizing target coverage while minimizing the 

amount of energy consumption. Considering the high redundancy in dense directional sensor networks, it is possible to 

preserve energy and enhance coverage quality by turning off redundant sensors and adjusting the direction of the active 

sensor nodes. In this paper, we address the problem of maximizing network lifetime with adjustable ranges (MNLAR) and 

propose a new game theory-based algorithm in which sensor nodes try to adjust their working direction and sensing range 

in a distributed manner to achieve the desired coverage. For this purpose, we formulate this problem as a multiplayer 

repeated game in which each sensor as a player tries to maximize its utility function which is designed to capture the 

tradeoff between target coverage and energy consumption. To achieve an efficient action profile, we present a distributed 

payoff-based learning algorithm. The performance of the proposed algorithm is evaluated via simulations and compared to 

some existing methods. The simulation results demonstrate the performance of the proposed algorithm and its superiority 

over previous approaches in terms of network lifetime. 

 

Keywords: Directional Sensor Networks; Target Coverage; Network Lifetime; Game Theory; Payoff-Based Learning 

Algorithm. 
 

1- Introduction 

Directional sensor networks (DSNs) contain several 

directional sensors deployed densely and randomly to 

cover a set of targets. Applications of such networks have 

been grown and widely applied in the field of industry and 

our daily life. In comparison with omni-directional sensor 

nodes, directional sensors have their unique characteristics, 

such as angle of view, working direction, and line of sight, 

therefore DSN applications require specific solutions for 

enhancing target coverage. Motility capability of a 

directional sensor node has a noticeable impact on the 

coverage enhancement in randomly deployed DSNs. 

Directional sensor nodes exploit motility to adjust their 

working direction. So motility can be used to minimize the 

overlapped regions. Because of limited energy resources in 

these networks, providing desired target coverage is a 

challenging problem [1-3].  

In many applications, a large number of directional 

sensor nodes are randomly deployed in an area of interest. 

The availability of redundant sensors enhances the fault 

tolerance capability of the network. However, keeping all 

the sensor nodes active is not efficient because it leads to 

higher energy consumption. Therefore, one of the goal of 

this paper is to enhance the target coverage in a network of 

self-orienting sensor nodes. The other goal is decreasing 

the power consumption and increasing the network 

lifetime.  

Since we are interested in the automated self-orienting 

of the nodes, we cast this problem as a non-cooperative 

game as it is a well-established tool for modeling 

coordination problems. There are many reasons to choose 

game theory as a method to solve the coverage problem in 

sensor networks. First, the principle of game theory allows 

sensor nodes to operate independently and calculate their 

proper orientation in a distributed manner. A well-

designed gain function that takes into account all the 

limitations of the problem including the energy 

consumption, makes it possible to establish acceptable 

coverage in the sensor network. So, we can provide 

scalable network coverage using game theory. Finally, the 

game theory method is resistant to node failures and 

environmental disturbances [4]. 

In this paper, we model the coverage problem as a finite 

strategic game and propose a game theory-based algorithm 

(GT-based algorithm), in which the utility function is 

designed to capture the tradeoff between the worth of the 
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covered area and the energy consumption due to sensing. 

An important issue is to devise distributed learning 

algorithms, using local information and processing 

abilities, to reach a Nash equilibrium (NE) of the game. To 

this end, we use a distributed payoff-based learning 

algorithm [5]. It has been proved that if all sensors (players) 

adhere to this algorithm, then each sensor selects the 

action profile that maximizes the total payoff of the 

sensors. 

In most game theory based algorithm, a challenging 

problem is  achieving the Nash equilibrium using a 

distributed learning algorithm [4, 6-10]. In [8, 10, 11], 

distributed learning algorithms are proposed to achieve NE 

in coverage problems. The authors in [12, 13] have studied 

distributed systems and propose distributed learning 

algorithms to achieve NE in potential games. However, 

there are two main drawbacks in this context: First of all, 

most of the results in this area have focused on converging 

to the NE, while in many cases it is not the optimum 

solution. Detecting this inefficiency is an extremely active 

research area in algorithmic game theory [14]. Secondly, it 

is often impossible to frame the interaction of a given 

system as a potential game [5]. We measure the 

performance of an action profile using the sum of the 

sensor's utility functions. Therefore, by designing the 

appropriate utility function for each player (sensor node) 

and applying a distributed payoff-based learning algorithm, 

coverage in the sensor network converges to a Pareto 

optimal action profile. The utility function is defined based 

on the tradeoff between coverage and energy consumption. 

Then each sensor learns how to adjust its working 

direction to maximize its utility function which 

corresponds to find its best orientation based on local 

information. 

In the following, the main contributions of this study are 

presented: 

 We formulate the maximum network lifetime with 

adjustable ranges (MNLAR) problem as a 

multiplayer repeated game in which each sensor as 

a player tries to maximize its utility function. The 

utility function is designed to capture the tradeoff 

between the worth of covered targets and the 

energy consumption due to sensing. 

 We propose a distributed payoff-based learning 

algorithm that converges to an efficient action 

profile. 

 The performance of the proposed algorithm is 

evaluated via simulations and compared to previous 

approaches. The simulation results show that the 

proposed algorithm results in activating the 

minimum number of directional sensors. In 

addition, active sensors learn how to adjust their 

sensing ranges to maximize the coverage. These 

bring about less energy consumption along with 

network lifetime extension. 

The paper is organized as follows: In section 2, we 

briefly review recent studies in the context of sensor 

coverage problems. In section 3, we introduce the 

MNLAR problem in DSNs. Section 4 presents the 

proposed method and its formulation based on game 

theory. In section 5, simulation results are presented 

through several experiments. Finally, we conclude the 

paper in section 6. 

2- Related Work 

In this section, we briefly review the research work on 

coverage in wireless sensor networks. The coverage 

problem is usually divided into three categories: area 

coverage, point coverage, and barrier coverage [2]. The 

purpose of area coverage is to cover the whole area. Point 

coverage is the problem of covering Points of Interest (PoI) 

in the area. The barrier coverage guarantees that every 

movement that crosses a barrier of sensors will be detected.  

Habibi et al. [15] have proposed a distributed Voronoi-

based strategy to maximize the sensing coverage in a 

mobile sensor network. In this algorithm, each sensor 

moves through a gradient-based nonlinear optimization 

approach and is placed inside its Voronoi cell. 

Ai et al. [16] have studied the problem of covering 

targets with directional sensors. They have formulated the 

problem as an optimization problem to maximize the 

coverage with a minimum number of sensors and proved 

that it is NP-complete. They have proposed several greedy 

heuristic methods to solve the problem.  

Mohamadi et al [17] have proposed two Greedy-based 

algorithms for target coverage in directional sensor 

networks with adjustable sensing ranges. To maximize the 

sensor lifetime, they have used both scheduling and 

adjusting sensing range techniques to form cover sets to 

cover all targets in the network. 

In [18], the authors have provided a GA-based 

algorithm to find cover sets of directional sensors with 

appropriate sensor ranges in order to solve the MNLAR 

(Maximum Network Lifetime with Adjustable Ranges) 

problem.  

Yu et al. [19] have addressed the problem of providing K-

coverage along with  prolonging the network lifetime in 

wireless sensor networks with both centralized and 

distributed protocols. They have introduced a new concept 

of Coverage Contribution Area (CCA). Based on this 

concept, a lower sensor spatial density is provided. 

The authors in [20] have designed a probabilistic 

coverage preservation protocol (CPP) to achieve energy 

efficiency and ensure a certain coverage rate. The purpose 

of the proposed protocol is to select the minimum number 

of probabilistic sensors to reduce energy consumption. 

A graph model named Cover Adjacent Net (CA-Net) is 

proposed by Weng et al in [21] to simplify the problem of 
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k-barrier coverage while reducing the complexity of 

computation. Based on the developed CA-Net, two 

distributed algorithms, called BCA and TOBA, are 

presented for energy balance and maximum network 

lifetime. 

Mostafaei et al. [11] have proposed a distributed 

boundary surveillance (DBS) algorithm to cover the 

boundary and reduce the energy consumption of sensors. 

DBS selects the minimum number of sensors to increase 

the network lifetime using learning automata. 

Li et al. [22] have proposed the Voronoi-based 

distribution approximation (VDA) algorithm. In the 

proposed algorithm, in order to maximize the coverage of 

the desired area, the most Voronoi edges are covered. In 

[23], the authors have proposed the distributed Voronoi-

based self-redeployment algorithm (DVSA), aiming to 

improve the overall field coverage of mobile directional 

sensor networks. This paper has utilized the geometrical 

features of Voronoi diagram and the advantages of a 

distributed algorithm. 

Recently, game-theoretic approaches have been taken 

into consideration to solve coverage problems in WSNs [4, 

6, 24, 25]. In [26], the authors have proposed an algorithm 

based on game theory for the problem of maximizing 

coverage and reducing energy consumption. They have 

shown that the desired solution in this model is an NE 

strategy profile. 

In [27], the authors have proposed a distributed learning 

method to maximize the area coverage in mobile 

directional sensor networks. Each sensor in collaboration 

with its neighbors tries to determine its best position and 

orientation.  

The authors in [28] have considered the problem of area 

coverage without location information in mobile sensor 

networks. They have modeled this problem as a potential 

game and proposed a distributed learning algorithm to 

achieve an NE.  

 

In [29] coverage of an unknown environment is 

investigated by robots. The state-based potential game was 

designed to control the robots’ actions. The reward of 

sensing the areas and the penalty of energy consumption 

due to the sensors’ movement are considered in the utility 

function. The sensors update their action profile using the 

Binary Log-Linear Learning (BLLL) in which the sensors 

must know an estimation of the outcome of their future 

actions. Hence, an estimation algorithm is proposed to 

assist the sensors in predicting the probability of targets in 

unknown areas. An improved EM algorithm is introduced 

to estimate the number of targets and other probability 

distribution parameters. In this study, we propose a game 

theory-based algorithm to optimally cover targets and 

reduce energy consumption. 

3- Problem Definition  

We consider a two-dimensional mission space, where n 

directional sensors with motility capability and a set of m 

target points, T, are initially located within a given area. 

We have defined several power levels, p, and a set of 

working directions, D, for sensor nodes. So, each sensor si 

has two parameters, working direction and power level. 

Sensor nodes can rotate around their axis and adjust their 

power level to cover a sector area. So, a directional sensor, 

si, monitors all targets within its sensing range and field of 

view. Each sensor has a limited energy resource. The 

amount of energy consumption is a function of  sensing 

range; the greater sensing range, the more energy is 

consumed [30]. All the sensors in the network have the 

same characteristics in terms of initial battery power and 

energy consumption function.  

Since increasing the power level is equivalent to 

increasing the sensing range which results in covering 

more targets, for each sensor direction      and each power 

level p > 1, we have               (        )           

  , which (di,j, p) is i
th

 sensor with j
th

 direction activated at 

power level of p.             is the set of covered targets by 

sensor si. The power level p which is sufficient to cover 

target tj  by sensor (        )  is minimal if     (        ) and 

    (        )             . It means that target tj 

cannot be covered by power level less than p.  The 

notations used in this paper are listed in Table 1.  

We assume the sensors are non-rechargeable. According 

to [17], the energy consumption due to displacement 

between the directions of a sensor is negligible, so it is 

ignored. Here, a positive parameter Δ
p
 is defined at each 

power level p [30]. The parameter Δ
p
 indicates the ratio 

between battery consumption at level p and level 1. Level 

1 is the lowest and cheapest level. For example, if Δ
p
=2, 

then the battery consumption at level p is twice that of 

level 1 (Δ
p
=1). 

Table 1: Notations 

Notation Meaning 

n Number of sensors 

m Number of targets 

w Number of working directions,     

p Number of different power levels,     

si ith sensor, for all           

tk kth target, for all           

li Lifetime of sensor si 

di,j Jth direction of ith sensor 

D Set of the working directions  
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S Set of sensors,           

T Set of targets,           

(di,j, p) ith sensor with jth direction activated at power 

level of p 

T(di,j, p) all the targets covered by ith sensor with jth 

direction at power level of p 

 

Problem. How to divide the available sensors into cover 

sets so that each cover set covers all the targets in the area 

of interest with the goal of prolonging the network lifetime 

as much as possible. In other words, the main challenge of 

this process is assigning the appropriate working direction 

and sensing range to each sensor in a way that full target 

coverage and maximum network lifetime can be achieved. 

For a better understanding, consider Fig. 1.A, which 

includes a scenario with three targets and four directional 

sensors to monitor the targets in the network. Fig. 1.B 

shows that each sensor has three directions di,j (1    ) 

and two sensing ranges. Consider the set of sensor nodes 

with their best parameters that cover each target tj. 

                         ,                         , 

                         . the purpose is to form the 

best cover set. The possible cover sets include: 

                                 

                                 

                                 

                               . 

Therefore, in this example, the cover set C4 is more 

desirable because of less energy consumption. 

 

 

Fig. 1. (A) Example network with four directional sensors and three 

targets. (B) A directional sensor with three directions and two sensing 
ranges. 

4- Proposed GT-Based Algorithm  

In this section, we propose a game theory-based 

algorithm (GT-based algorithm) to target coverage. The 

new method is a solution to the MNLAR problem in DSNs. 

It converges to an efficient action profile using a 

distributed payoff-based learning algorithm. The output of 

the proposed algorithm is a cover set containing sensors 

with appropriate sensing ranges and working directions 

that can monitor all targets within the network. To 

calculate the activation time of the constructed cover set, 

we consider the sensor that minimizes 
  

  . Then the 

residual energy of the sensors in the cover set is calculated. 

The sensors that have no residual energy are removed from 

the list of available sensors. The GT-based algorithm 

continues its operation until all targets are fully covered. 

Finally, the sum of the activation times is returned as the 

network lifetime. 

4-1- Background in Game Theory  

In this section, we consider a brief review of the 

concepts in game theory. More information about game 

theory and learning in game theory is mentioned in [31, 

32]. 

The strategic game   〈     〉 has three components: 

The finite set of N players (sensors) where          . 
An action set           where    is the finite 

action set of player i. 

The set of utility (payoff) functions  . where the utility 

function        models the benefit of player i over 

action profiles. 

For an action profile                        
                      denotes the action profile of all 

players other than player i. Therefore, the action profile a 

can be represented as         . 

The welfare of an action profile     is defined as follows: 

     ∑      

   

 
(1) 

if an action profile     maximizes the welfare, then the 

action profile a is efficient. In other words: 

                  (2) 
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4-2- Game Formulation 

Suppose m targets                located in known 

locations in the area. A set of directional sensors   
             with adjustable sensing ranges are deployed 

adjacent to the targets to completely monitor them. 

Sensors are static with variable sensing ranges between 

rmin and rmax. We assume that the communication range of 

each sensor i (Ri) is at least twice the rmax (        ). 

Thus, each sensor can transmit state information to its 

neighbors and interact with its neighbors. 

The worth of each target           is denoted with 

    . Each sensor si selects its mode from the set          

   {
                  
                   

 . 

The sensor's direction is determined by di and the set 

                      includes the defined working 

directions of sensor nodes. Each sensor si chooses its 

sensing range ri from the discrete set                 . 

The action of each sensor (player) si is shown by a vector 

   and defined as follows:                     
     . 

As mentioned before,           is a set of targets covered 

by sensor direction      while its power level is a. For each 

target             ,       represents the number of 

sensors that can observe the target point k and is defined as 

follows: 

      ∑   
   

                (3) 

The profit of observing the target point   , which is 

shown by    , is evenly divided by the sensors that observe 

  . So, the utility that sensor si obtains due to sensing is 

equal to 

   ∑
  

     
    (      )

  
(4) 

Due to energy constraints, we consider the energy 

consumption parameter in the utility function. We assume 

that the energy consumption of sensor nodes is because of 

their sensing activity. So, the energy consumption of each 

sensor node depends on its sensing range and is defined as 

(5). 

  
                  

  (5) 

in which     is a weighting factor related to energy 

consumption. Therefore, the utility function of the sensor 

si represents its contribution to the coverage task and 

energy consumption due to sensing. We consider the 

utility function for sensor si as follows: 

        ( ∑
  

     
    (      )

)    
          

(6) 

In the following, we present a new distributed learning 

algorithm that leads to Pareto optimal outcomes. 

4-3- Payoff-Based Learning Algorithm  

The game G is repeated each time            . In 

time stamp t, the sensors simultaneously select their 

actions, so the action profile is                      

and each sensor    receives utility         . The sensor    

will select the action        according to the probabilistic 

distribution            .       represents the strategy of 

sensor    at time t.   
      indicates the probability that the 

sensor    selects action        at time t according to the 

strategy      . The sensor's strategy at time t depends on 

observations in previous times              . 
The strategies of the sensors are updated by the information 

they have gathered. We know that the sensors here have 

limited observations. In this situation, sensors must learn to 

play an action profile that maximizes welfare. In this case, 

the sensors only have access to the actions they played and 

the utilities they received. Therefore, the strategy 

adjustment mechanism of sensor    is as follows: 

         {        (    )}
           

  (7) 

Such an algorithm is called payoff-based or completely 

uncoupled [33]. It is proved in [5, 34-37] that for finite 

strategic games, there are completely uncoupled learning 

rules that lead to Pareto optimal Nash equilibria. We use 

the learning rule presented in [5]. This distributed learning 

rule leads to the convergence of the game into a Pareto 

optimal action profile, which maximizes the welfare.  

Each sensor has a baseline action and a baseline utility, that 

is expected to play and receive, respectively. Each sensor 

has an internal state variable called mood. Mood defines 

the sensor behavior as follows. There are two distinct types 

of moods: content and discontent. When a sensor is in the 

content mood, baseline action is selected with high 

probability. When a sensor is in a discontent mood, an 

action differs from the baseline action is selected with a 

high probability. Each sensor updates its mood after 

choosing an action and receiving a payoff by comparing the 

action played and the payoff received with its baseline 

action and baseline payoff. At each time step, the sensor's 

state is represented by a triple   ̅   ̅     , where 

  ̅     is the baseline action. 

  ̅  is the baseline utility. 

    is the mood of sensor i, which can be content 

(C) or discontent (D). 

The main steps of the distributed learning algorithm for 

Pareto optimality are described as follows: 

Step 1- Initialization: 

 At stage    , each player randomly selects and 

plays any action,      . 

 This action will be initially set as the player’s 

baseline action at stage 1,  ̅          .  

 Likewise, the player’s baseline utility at stage 1 is 

initialized as  ̅             .  
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 the player’s mood at stage 1 is set as        . 

Step 2- Action Selection:  

At each subsequent stage    , each player selects his 

action according to the following rules. 

 If the mood of sensor i is content, i.e.,        , 

the sensor chooses an action       according to 

the following probability distribution 

  
      ,

  

|  |   
        ̅ 

            ̅ 

 

where |  | represents the cardinality of the set    

and c is a constant that satisfies    . 

 If the mood of sensor i is discontent, i.e.,       
 , the sensor chooses an action    according to 

the following probability distribution 

  
      

 

|  |
                    

Note that the benchmark action and utility play no 

role in the sensor dynamics when the sensor is 

discontent. 

Step 3- Baseline Action, Baseline Utility, and Mood 

Update: 

Each sensor i sends its status information including 

            to its neighboring nodes or nodes that are less 

than or equal to twice the sensing range of the node i. Then 

each sensor i computes the payoff   (            ) based 

on the data collected from neighbors. the state is updated 

according to the following rules. 

 First, the baseline action and baseline utility at 

stage t+1 are set as 

 ̅             

 ̅         (            ) 

 The mood of sensor i is updated as follows. 

   *

 ̅    

 ̅       

     
+  [

     

        
 

]               

Else 

         {
                              

                               
 

Step 4- Return to Step 2 and repeat. 

The learning algorithm produces a sequence of action 

profiles            , in which the behavior of a sensor i 

in each time         depends on the baseline action  ̅ , 

the baseline utility  ̅ , and the mood            . To 

converge the game into an efficient action profile, the 

game's structure must be interdependent [35]. In the 

following, the definition of interdependence is fully 

described. 

Definition1 (Interdependence): A finite game G is 

interdependent If for any action profile     and any 

appropriate subset of the sensors    , There is a sensor 

    and a selection of actions     ∏       so that 

    
 
                 . 

In general, the interdependence condition states that the 

sensors cannot be divided into two distinct subsets that do 

not interact with one another. For this reason, we assume 

that the sensors are deployed in the area so that they cannot 

be divided into two distinct subsets and the condition of 

interdependence is established in the game. 

Theorem1: Consider a finite interdependent game with n 

players. Under the distributed learning algorithm for Pareto 

optimization defined above, a state     ̅  ̅      is 

stable if and only if the following conditions are met. 

 The action profile  ̅  optimizes the welfare 

   ̅  ∑     ̅    . 

 The baseline actions and payoffs are aligned, i.e. 

for each sensor i,  ̅      ̅ . 

 All sensors are in the content mood i.e. for each 

sensor i,     . 

Proof of the theorem depends on the resistance trees for 

Markov's decision process, and it has been proven in [38]. 

5- Simulation Results 

In this section, we evaluate the performance of the 

proposed algorithm through several experiments. The 

algorithms are simulated on MATLABR2017b and 

implemented on a system with an Intel Core i7 processor, 

3.4 GHz CPU, and 4 GB RAM. The most important 

criterion for evaluating the performance of the algorithm is 

the network lifetime. The network lifetime is defined as 

the time that the sensor nodes can cover all of the targets. 

Each experiment examines the impact of different 

parameters on the network lifetime. Here, to model a DNS, 

m targets and n directional sensors are deployed randomly 

and uniformly in a               area. Each sensor 

has several working directions and sensing ranges. For 

each sensor node, only one working direction and one 

sensing range can be activated at each unit of time. By 

default, the number of sensors and targets are 100 and 10, 

respectively. Also, we have considered 3 working 

directions for each sensor. The sensing range of each 

sensor can be adjusted from 80-120(m) with incremental 

step 10(m). We assume that each sensor initially has one 

unit of energy. 

To establish the interdependence condition, those targets 

that are not monitored by any sensor direction are ignored 

and all sensors that cannot cover any targets are removed 

from the list of sensors. The simulation parameter is chosen 

as                       . According to [38], 

employing an annealing schedule    
 

√ 
 in the learning 

algorithm guarantees the convergence to an efficient action 

profile.  
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Experiment 1. This experiment is performed to provide an 

intuitive example for the implementation of the proposed 

algorithm. Five targets (m=5) and 20 directional sensors 

(n=20) are randomly deployed in the area. Fig. 2 shows the 

initial configuration of the network, and Fig. 3 shows the 

final configuration of the network after     iterations. 

According to Fig. 3, in addition to full coverage of the 

targets, energy consumption in the area has decreased due 

to the adjustment of working direction and sensing range 

of all sensor nodes. In this figure, all targets are covered 

with the minimum number of sensors with the least 

overlapping area (each target is exactly in one sector). 

Consequently, it is clear that the result is a Pareto optimal 

action profile. Fig. 4 presents the evolution of the welfare 

for    
 

√ 
. The result shows the convergence of the 

welfare function to its maximum value. The reason is that 

energy consumption due to sensing is considered in the 

utility function. 

Experiment 2. This experiment is designed to evaluate the 

relationship between the number of directional sensors and 

the lifetime of the network. To this end, we have 

considered sensor networks with 60-100 sensor nodes. Fig. 

5 shows that increasing the number of sensor nodes results 

in enhancing the network lifetime. The reason is that each 

target is covered with more sensors, so more cover sets are 

constructed and the network lifetime is increased. 

Simulation results demonstrate that as the number of 

sensors increases, the proposed GT-based algorithm 

performs better than the Genetic-based algorithm [18] and 

Greedy-based algorithm [17]. This is due to the iterative 

property of learning algorithms and the more efficient 

management of energy consumption in the proposed game. 

Experiment 3. This experiment is performed to determine 

how the number of targets affects the network lifetime. For 

this purpose, we have considered an area of interest with 6-

14 target points. According to Fig. 6, network lifetime 

decreases when the number of targets increases. The reason 

is that as the number of targets increases, more sensors are 

needed to monitor them. This will cause the sensors to run 

out of energy earlier, so results in reducing the network 

lifetime. 

Fig. 7 shows the energy consumption of the cover sets in 

Greedy-based, Genetic-based, and GT-based algorithms 

based on the number of targets. As expected, an increase in 

the number of targets increases energy consumption. The 

reason is that more sensors are needed to cover more 

targets. The results confirm that the GT-based algorithm 

consumes less energy compared to the other two algorithms 

since the proposed algorithm activates fewer sensor nodes, 

so the energy consumption due to sensing in GT-based 

algorithm is less than Genetic-based algorithm and Greedy-

based algorithm. 

Experiment 4. This experiment is performed to investigate 

the effect of the sensing range on the network lifetime. The 

sensing range is fixed between 80 and 120 with incremental 

step 10. According to the results presented in Fig. 8, an 

increase in the sensing range leads to an improvement in 

the network lifetime. This is because of this fact that 

increasing the sensing range results in covering more 

targets, so fewer sensors are needed to cover all targets. In 

comparison with the other two algorithms, experiment 

results confirm that the proposed algorithm is more 

successful in terms of maximizing network. 

 

Fig. 2. The initial configuration of the network where "•" and "+" are 
sensor nodes and targets, respectively. 

 

Fig. 3. The final configuration of the network after        iterations. 
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Fig. 4. The evaluation of the welfare function in    
 

√ 
. 

 

Fig. 5. Effect of the number of sensors on the network lifetime. 

 

Fig. 6. Effect of the number of targets on the network lifetime. 

 

Fig. 7. Effect of the number of targets on energy consumption. 

 

Fig. 8. Effect of sensing range on the network lifetime. 

6- Conclusion 

In this paper, we presented a new game theory-based 

algorithm for target coverage in networks containing 

sensors with multiple directions and sensing ranges to 

extend network lifetime. Due to the energy limitations in 

sensor networks, we formulate the target coverage problem 

as a finite strategic game in which a utility function is 

formulated to consider the tradeoff between energy 

consumption and coverage quality. To achieve an efficient 

action profile, we present a distributed payoff-based 

learning algorithm. The performance of our proposed 

algorithm was evaluated via simulations and compared to 

the greedy-based and genetic-based algorithms. The 

simulation results demonstrated the performance of our 

proposed algorithm and its superiority over previous 

approaches in terms of increasing the network lifetime. 
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