

Journal of Information Systems and Telecommunication, Vol. 2, No. 1, January-March 2014

* Corresponding Author

1

A Learning Automata Approach to Cooperative Particle Swarm

Optimizer

Mohammad Hasanzadeh*
Computer Engineering and Information Technology Department, Amirkabir University of Technology, Tehran, Iran

mdhassanzd@aut.ac.ir

Mohammad Reza Meybodi
Computer Engineering and Information Technology Department, Amirkabir University of Technology, Tehran, Iran

mmeybodi@aut.ac.ir

Mohammad Mehdi Ebadzadeh
Computer Engineering and Information Technology Department, Amirkabir University of Technology, Tehran, Iran

ebadzadeh@aut.ac.ir

Received: 14/Apr/2013 Accepted: 08/Feb/2014

Abstract
This paper presents a modification of Particle Swarm Optimization (PSO) technique based on cooperative behavior of

swarms and learning ability of an automaton. The approach is called Cooperative Particle Swarm Optimization based on

Learning Automata (CPSOLA). The CPSOLA algorithm utilizes three layers of cooperation which are intra swarm, inter

swarm and inter population. There are two active populations in CPSOLA. In the primary population, the particles are

placed in all swarms and each swarm consists of multiple dimensions of search space. Also there is a secondary

population in CPSOLA which is used the conventional PSO's evolution schema. In the upper layer of cooperation, the

embedded Learning Automaton (LA) is responsible for deciding whether to cooperate between these two populations or

not. Experiments are organized on five benchmark functions and results show notable performance and robustness of

CPSOLA, cooperative behavior of swarms and successful adaptive control of populations.

Keywords: Particle Swarm Optimizer (PSO), Cooperative Particle Swarm Optimizer (CPSO), Learning Automata.

1. Introduction

Particle Swarm Optimization (PSO) [1], [2] is a

population based technique inspired form shoaling

behavior of fish and swarming behavior of insects. The

mystery becomes evident when the simple rules that

followed by individuals leads to emergent of well-

organized system. Cooperative PSO (CPSO) [3], [4] is a

variation of the traditional PSO algorithm in which the

dimensions of population divided into multiple separate

swarms and each swarm try to optimize the problem

separately. During the fitness evaluation of particles, the

cooperation is occurred between swarms. Comprehensive

Learning PSO (CLPSO) [5] is one of the most successful

PSO improvements. A new learning strategy is used in

CLPSO, where all particles' best information is used to

update any other particle's velocity. The inertia weight [6]

is one of the most important PSO's parameters, which is

used to balance the global and local search of the

population. Recently, an Adaptive PSO (APSO) [7] has

introduced. APSO adaptively controls the PSO

parameters by estimating the population distribution.

Beside the adaptation of the inertia weight, APSO

algorithm controls acceleration coefficients by four

strategies named as exploration, exploitation,

convergence and jumping out.

A Learning Automaton (LA) [8], [9] is a machine

which is adapted to changes in its environment. The

adaption is the result of learning process of the automaton.

Recently learning automata is used for adaptive parameter

selection in Evolutionary Algorithms (EA) [10], [11]. Also

a new hybrid method of optimization which called PSO-

LA [12]–[17] has been emerged. In PSO-LA algorithms an

LA or a group of learning automata is assigned to the

whole population or each particle of the population. LA or

group of LAs controls the path and velocity of the particles.

Moreover, LA has application in Grid computing [18]. In

[19], Distributed Learning Automata (DLA) has been used

for Grid resource discovery.

CPSO family [3] consists of four algorithms: CPSO-S,

CPSO-SK, CPSO-H and CPSO-HK where K is the split

factor parameter which specifies the length of desired

solution vector. Typically, while optimizing an N –

dimensional problem by using CPSO-S, K will be set to N

(number of dimensions). Having both beneficial

characteristics of PSO and CPSO-SK, CPSO-HK is emerged

as the combination of these two algorithms. It is a tempting

idea to have a mechanism which is able to understand when

to switch between PSO and CPSO-SK [3].

In [16] the first attempt to improve this hybridization

of PSO and CPSO algorithms is done by embedding an

automaton as a toolbox of the switching mechanism.

Furthermore, in this paper we deeply investigate the

behavior of discussed learning automata approach for

CPSO family by a set of diverse experiments.

mailto:mdhassanzd@aut.ac.ir
mailto:mmeybodi@aut.ac.ir
mailto:ebadzadeh@aut.ac.ir

Hasanzadeh, Meybodi & Ebadzadeh, A Learning Automata Approach to Cooperative Particle Swarm Optimizer

2

The paper is organized as follow: section 2 reviews two

PSO heuristics. Section 3 introduces learning automaton

and its application in PSO. Section 4 describes cooperative

PSO based on learning automata. Experimental setup and

simulation results are presented in section 5.

2. Particle Swarm Optimizer (PSO)

2.1 Conventional formulation of PSO

Particle Swarm Optimization (PSO) [1], [2] consists

of a population of particles in which each particle

represents a feasible solution vector. Assume that we

have an N–dimensional problem space with M particles

which are initialized in a feasible search space. The

velocity, position and best previous position of ith

particle are respectively shown by

 ,

 and

 . Also the best

position of the population is

 . The velocity

and position
 of the dth dimension of the ith particle are

manipulated through the following [5]:

 

 

1

2

1

2

d d d d d

i i i i i

d d d

i i

V w V c rand pbest X

c rand gbest X

     

   

(1)

d d d

i i iX X V 
 (2)

Where c1 and c2 are acceleration constants which

absorb the particles to pbest and gbest positions. [0,1]

is inertia weight which controls the global and local

searches. rand1 and [0,1] are two random

numbers generated for each dimension of the particles.

The algorithm of the original PSO is given in Fig. 1.

2.2 Cooperative Learning in PSO

The idea of cooperative learning was first

implemented in the field of Genetic Algorithm (GA) by

Potter [20]. Potter suggested that for optimizing the

designated target function, each dimension of the fitness

function could be optimized by a distinct population and

be evaluated in form of an N–dimensional vector through

the fitness function. PSO and GA both suffer from the

Curse of dimensionality. Using cooperative technique in

PSO may lead to promising results. Recently The concept

of cooperation mapped into PSO technique. Cooperative

behavior in PSO was first introduced by Van den Bergh

[4]. In cooperative PSO instead of having one swarm of

M particles trying to optimize the designated N–

dimensional optimization problem, we have N swarms of

M particles which working on an isolated 1–dimensional

problem. In this approach we should use a context vector

to build a required N–dimensional vector to evaluate each

of the swarms.

The family of CPSO algorithm proposed in [3]

consists of the following algorithms: CPSO-S, CPSO-SK,

CPSO-H and CPSO-HK. In CPSO-S algorithm each

dimension of search space is considered as a swarm of M

particles and all swarms are trying to find a better solution

vector. If there is any correlation in the population, it

would be desirable to gather the correlated dimensions in

the same swarm. The idea of correlated variables leads to

emergence of split factor parameter which tuned the

swarm size. Now, instead of splitting the population into

N swarms of 1-dimensional vectors like CPSO-S, we

could have K swarms of C–dimensional vectors (C<N)

like CPSO-SK. Standard PSO algorithm has the ability of

escaping from local minima and CPSO-SK algorithm has

fast convergence speed. Merging both beneficial

characteristic of this two algorithms leads to appearance

of CPSO-HK algorithm. CPSO-HK algorithm consists of

two phases, in 1
st
 phase CPSO-SK run and the information

exchange performs from CPSO-SK half to PSO half of

algorithm. At 2
nd

 phase, PSO run and information

exchange form PSO half to CPSO-SK half performs. Note

that each phase performs in a separate iteration.

Cooperative PSO [3], [4] divides the initial population

into some subpopulations and each of these subswarms

optimizes their designated dimensions individually. There

are two layers of cooperation in a cooperative PSO. The

first layer lies under the collaborative behavior of

particles in specific dimensions and the second one is the

schema that produces a solution vector by means of

sharing the best information of each subpopulation to

constitute a valid solution vector. In order to evaluate

each member of the subpopulation, one requires

constructing a context vector which aggregates the best

solution of each subpopulation within an N-dimensional

vector. Typically to evaluate the current subpopulation,

the corresponding dimensions filled with the position of

particle and the other dimensions are considered constant.

Fig. 2 is the cooperative PSO pseudocode.

Algorithm 1 Standard PSO

for each generation k do

 for each particle i do

 Update velocity of ith particle by (1)

 Update position of ith particle by (2)

 Calculate particle fitness f(xi)

 Update pbesti and gbest

 i = i+1 // next particle

 end for

 k = k+1 // next generation

end for

Fig 1. The pseudocode of the standard PSO

Algorithm 2 Cooperative PSO (CPSO)

define

Split N-dimensional search space into j subpopulations.

Calculate the best individual of each subpopulation (sbest).

Construct a Context Vector (CV) through the best individuals

of each subpopulation:

CV = [sbest1, sbest2, …, sbestj]

for each generation k do

 for each subpopulation j do

 for each particle i do

Replace current particle of jth Subpopulation by its

Journal of Information Systems and Telecommunication, Vol. 2, No. 1, January-March 2014 3

corresponding positions in the CV

Evaluate the N-dimensional output vector through

the fitness function.

i = i+1 // next particle

end for

Update sbestj.

j = j+1 // next swarm

end for

k = k+1 // next generation

end for

Fig. 2 The pseudocode of the cooperative PSO

2.3 Cooperative based PSO algorithms

As well as cooperative PSO [21] and GA [22], the

cooperative approach is also implemented in other EAs

such as: Evolutionary Strategy (ES) [23], Differential

Evolution (DE) [24], [25] and Artificial Bee Colony

(ABC) [26]. The following are four recent advances in the

context of cooperative PSO:

The Cooperative Coevolutionary ES (CCES) [23]

divides the population of ES into some subspecies and

lets them evolve. By means of a migration operator,

CCES could hybridize the cooperative evolutionary

behavior of CPSO with ES. The proposed model controls

the interaction of subspecies properly and exhibits good

performance results.

The Cooperative Coevolutionary DE (CCDE) [24]

partitioned the problem into several sub problems and

allocated a subpopulation to each of them. In [25], a

randomized grouping mechanism introduced and an

adaptive weighting strategy used in order to adapt the

separated components. The idea was accomplished to

bring the interacted variables into a similar subcomponent.

The self-adaptive neighborhood search into DE

(SaNSDE) could tackle the non-separable problems with

more than 1000 dimensions inside.

The cooperative approach of Potter is exerted into

ABC and Cooperative ABC (CABC) [26] is emerged.

Like two variants of CPSO, he introduced two versions of

split swarm and hybrid for CABC. The CABC_S

algorithm can efficiently optimize the separable problems

and the CABC_H algorithm has the ability to escape from

the local minima.

2.4 Evaluation Scheme of PSO versus CPSO

The key characteristic of Standard PSO [2] and

cooperative PSO [3] is related to their corresponding

population. The standard PSO contains a single

population where this single population is divided into

multiple swarms in cooperative PSO.

There is a paradigm in conventional PSO algorithm

which could be extended to Cooperative PSO: In order to

find a proper solution vector, each particle of the swarm

fly through an N–dimensional search space by N values

corresponded to each dimension of the space. To

understand this phrase deeply, consider the population as

a matrix [M N] where M and N respectively represent the

number of particles and dimensions, respectively as:

 (see Fig. 3). In this

framework, velocity and position of the standard PSO [2]

population were updated row wise. The interpretation of

this framework in CPSO [3] is quite different from that of

standard PSO. In CPSO the population is optimized

column wise (dimension wise) with the dimension of each

particle being evaluated by a context vector (CV) which is

built from the best particle of corresponding swarm and

the best particles of other swarms.

     

     

     

    

    

1 2

1

2

/

1,1 1, 2 1,

2,1 2, 2 2,

,1 , 2 ,

: 1

: , , ,

N

M

i i

i j i j

P D D D D

P P P P N

P P P P N

P P M P M P M N

PSO f P fitness P D

CPSO f P S fitness CV P S j

 



 
 
 
 
 
 
 
 
  

Fig. 3 Comprehensive view of the PSO population. f(Pi) represents the

ith particle of population which evaluates through the traditional PSO

mechanism and f(Pi,Sj) indicates the evaluation process of the ith particle
(Pi) of jth swarm (Sj) of CPSO population.

3. Learning Automata (LA)

3.1 Conventional Formulation of LA

Learning Automata [8], [9] is a stochastic

optimization technique from the family of Reinforcement

Learning (RL) algorithms. Having enough interaction

with the unknown environment, elegance emerges and the

optimal policy will be chosen. Fig. 4 shows how

automaton interacts with its environment. A study of the

learning process of LA in a random environment is

comprehensively reported in [8].

Random

Environment

Learning

Automata

reinforcement signal

action

Fig. 4. The interaction between learning automata and environment.

Learning automata [8], [9] are divided into two groups

of fixed-structure and variable-structure automata. A

Variable-Structure LA (VSLA) is represented by a

quadruple , Where is a set of

actions, is a set of inputs, p={p1,…,pr} is

the probability vector corresponds to each action and

 is the learning algorithm.

If p(n+1) is a linear function of p(n) then the

reinforcement scheme should be linear; otherwise it is

nonlinear. In the simplest form of VSLA consider an

automaton with r actions in a stationary environment

where is included in inputs. After selecting the

action by the automaton, the reinforcement signal will

receive from the environment. When the positive

Hasanzadeh, Meybodi & Ebadzadeh, A Learning Automata Approach to Cooperative Particle Swarm Optimizer

4

response received, the action probabilities are

updated through (3):

 
    
   

. 1
1

. 1

j j

j

j

p n a p n if i j
p n

p n a if i j

   
  

 

(3)

When the negative response received from the

environment, action probabilities are updated through (4):

 
   

   

. 1

1
1 .

1

j

j

j

p n b if i j

p n b
b p n if i j

r

  


  
  



(4)

The a and b are called learning parameters and they

are associated with the reward and penalty responses. If a

and b are equal, the learning scheme is called LR-P (Linear

Reward-Penalty). If the learning parameter b is set to 0,

then the learning scheme is named LR-I (Linear Reward-

Inaction). And finally if the learning parameter b is much

smaller than a, the learning scheme is called (Linear

Reward-epsilon-Penalty).

3.2 LA based PSO algorithms

Parameter adaption [10], [11] is one of the most

difficult tasks in EAs. As there are multiple parameters in

PSO, it needs a mechanism to tune them during the

evaluation of the population. In [10] a study of adaptive

PSO parameter selection is conducted. Also, embedding

learning automata in the population of PSO is another

improvement; the model is called PSO-LA. In PSO-LA

model an automaton is used to configure the search

behavior of particles and adjust the velocity and position

of them based on optimal selected policy. In coarse-

grained PSO-LA [11] algorithms, an LA takes the

responsibility of steering the whole swarm (|LA|=1).

Since coarse-grained PSO-LA algorithms are trapped into

local minima, in fine-grained PSO-LA algorithms [13],

[14], learning automata are assigned to each particle of

the swarm (|LA|=|population size|). This technique gives

more maneuverability to the particles for searching

through the search space. Some improved PSOs using LA

are illustrated in the following:

A Dynamic Particle Swarm Optimization based on a

3-action Learning Automata (DPSOLA) introduced in

[14]. The embedded learning automaton accumulates the

information from individuals, local best and global best

particles then combines them to navigate the particle

through the problem space.

One variant of PSO is Comprehensive Learning

Particle Swarm Optimizer (CLPSO) [5], which uses all

individuals’ best information to update their velocity. The

novel strategy of CLPSO enables population to read from

exemplars for specified generations which is called

refreshing gap m. In [15], two classes of Learning

Automata (LA) developed in order to study the learning

ability of automata for CLPSO refreshing gap tuning. In

the first class, a learning automaton is assigned to the

population and in the second one each particle has its own

personal automaton.

The cooperative PSO based on LA which introduced

in [16] is the first version of CPSOLA. This algorithm

utilizes both beneficial characteristics of PSO and CPSO

by employing a learning automaton as a realtime decision

making optimization tool.

The Adaptive Cooperative Particle Swarm Optimizer

(ACPSO) [17] which facilitates cooperation technique

through usage of LA algorithm. Cooperative learning

strategy of ACPSO optimizes the problem

collaboratively and evaluates it in different contexts. In

ACPSO algorithm, a set of learning automata associated

with dimensions of the problem are trying to find the

correlated variables of the search space and optimize the

problem intelligently. This collective behavior of

ACPSO will fulfill the task of adaptive selection of

swarm members.

4. Cooperative Particle Swarm Optimizer

based on Learning Automata (CPSOLA)

4.1 Presenting Non-constraint Optimization

Problems

Optimization is an approach to solve the complicated

problems, like scheduling tasks. The framework of an N-

dimensional, non-constraint optimization problem is as

follows [5]:

  
1

1min ; n

n

x

f x x x x x

x

 
 

  
 
  

(5)

The optimization aim is to seek the optima in a search

space by generating several feasible solutions and

selecting the optimum one. Usually traditional techniques

like dynamic programming and greedy algorithms are

applied to optimization problems. In dynamic

programming by using divide and conquer method, in

each interval a portion of the search space will be omitted

and the optimal solution will extract from the residual

information. Also, during some steps of greedy

algorithms, the most optimal solution will be selected by

an excessive policy. In both of these listed algorithms, the

election of each step is performed the local search with

the hope of discovering the best solution. The lake of

retaining the exploration and exploitation equilibrium and

also excreting a segment of the search space in each

epoch, are the defects of the conventional optimization

approaches.

CPSO-SK cooperation

 cooperationC
P

S
O

-H
K

PSO

Fig. 5. Structural view of the CPSO-HK algorithm.

Journal of Information Systems and Telecommunication, Vol. 2, No. 1, January-March 2014 5

4.2 Introducing the Non-adaptive Cooperative

Scenarios

The CPSO model consists of four algorithms, from

now on, our study specifically focused on CPSO-HK

algorithm which covers the other three ones. Fig. 5 shows

the structure of CPSO-HK algorithm. "When to switch

between CPSO-SK and PSO?" is a question proposed by

Van den Bergh in [3]. For designing such a robust,

general and adaptive mechanism consider the following

scenarios in CPSO-HK algorithm:

Scenario 1: At the earliest generations, the particles

are scattered in the search space. It is desired to have fast

global search of CPSO-SK while any local minima are

placed around the particles. At the middle iterations of the

algorithm, while getting trapped in a local minimum,

using PSO is much beneficial to escape from it.

Scenario 2: Immediately after escaping from local

minima, it is safe for the algorithm to make use the high

speed of CPSO-SK till reaching the next local minimum.

Scenario 3: Sometimes the information exchange that

is occurred in each generation of CPSO-HK algorithm is

unnecessary. This unnecessary amount of cooperation

defects the run time performance of the CPSO-HK.

Reviewing the discussed scenarios, interleave

execution of CPSO-SK and PSO seems to be a naïve form

of cooperation between these two algorithms. A proper

choice is to form an adaptive cooperation between CPSO-

SK and PSO algorithms. By using one learning automaton,

we could have an adaptive switching mechanism which

intelligently switches between CPSO-SK and PSO

algorithms. As well as preserving the positive

characteristics of CPSO-SK and PSO algorithms,

CPSOLA algorithm significantly reduce the amount of

information exchange.

4.3 Describing the Adaptive Cooperative

Behavior of CPSOLA

Like CPSO-HK in CPSOLA, we have two separate

populations. The CPSO-SK population is our primary

population and the PSO population is the secondary one.

Information exchange between two populations is

postponed to critical generations because there is an

adaptive switching mechanism between these two

algorithms. A critical generation is a part of evolution

process in which the cooperation between CPSO-SK

algorithm and PSO is vital. The CPSOLA algorithm

presents two advantages in contrast to CPSO-Hk:

1) CPSOLA simultaneously utilizes both beneficial

characteristics of PSO and CPSO-Sk. It inherits fast

convergence speed of CPSO and also easily escapes from

local minima by utilizing PSO’s gbest and pbest

information.

2) CPSOLA adaptively uses both CPSO-SK and PSO in

order to maintain marginal performance while CPSO-HK

interleave this algorithms without any environment

perception.

3) CPSOLA balance the global and local search by

maintaining population diversity between PSO and CPSO.

The scheme of adaptive switching mechanism of

CPSOLA is shown in Fig. 6. The automaton has two actions:

1) Cooperation between primary and secondary population.

2) Isolation and just using primary population. In other

words: 1) Running CPSO-HK algorithm. 2) Running CPSO-

SK algorithm.

Learning

Automata

Isolation and just using

primary population

Cooperation between primary

and secondary populations

Primary

Population

Calculating

reinforcement signal

population response

updating learning automata’s probability vectors

1

r

1

r

Fig. 6. Schematic view of decision making by learning automata

In each generation of CPSOLA algorithm, the

automaton decides whether to start the alternative

population (PSO population) or not. While having enough

interactions with the populations, the automaton perceives

when to switch between two algorithms. In the following

we listed the five main differences between the CPSOLA

model and CPSO model: 1) Instead of having unnecessary

information exchange in each generation, preserve it for

critical generations. 2) Reduced the workload of algorithm

and made the execution time faster. 3) Preserve CPSO-SK

fast convergence speed property. 4) Keep the PSO’s

ability to escape from local minima. 5) Preserve the

diversity of population.

Equation (6) is the criterion to evaluate the

reinforcement signal in CPSOLA algorithm. If in the

current iteration global best position of primary

population (CPSO-SK swarm best particle) improved then

the automata's selected action would get the award and

the automaton will be punished otherwise. Since the

reinforcement signal is calculated in the context of

primary population, the global best position of secondary

population (PSO global best particle) do not have a direct

influence on evaluating this signal.

 
1

0

1

i i
if fitness Sbest Sbest

Otherwise










(6)

Fig. 7 is the pseudocode of CPSOLA algorithm. LA

has two actions: first, cooperation or information

exchange between CPSO and PSO population and second,

isolation or evolution of CPSO population. In CPSOLA

algorithm, an LA determines the time to perform

cooperation between primary and secondary populations.

At the earliest generations the LA selects actions

randomly but after passing middle iterations the ultimate

perception of the optimization problem occurs and the LA

could accurately detects the time for switching between

these two populations. This switching time is a key

advantage of CPSOLA algorithm in contrast to the

CPSO-HK interleave switching strategy.

Hasanzadeh, Meybodi & Ebadzadeh, A Learning Automata Approach to Cooperative Particle Swarm Optimizer

6

Algorithm 3 Cooperative PSO based on LA (CPSOLA)

define

 Initialize primary population with K swarms: P

 Initialize secondary population: Q

 Initialize LA with 2 actions: {cooperation, isolation}

do

 Select an action

 if the selected action is cooperation then

 for each swarm

 for each particle
 Update particle position by Equations (1) & (2)

 Calculate particle fitness

 Update pbest & gbest

 i = i + 1 // next particle

 end for

 j = j + 1 // next swarm

 end for

 Select a random particle form Q to write

 for each particle
 Update particle position by Equations (1) & (2)

 Calculate particle fitness

 Update pbest & gbest

 i = i + 1 // next particle

 end for

 for each swarm

 Select a random particle form P to write

 end for

 else if the selected action is isolation then

 for each swarm

 for each particle
 Update particle position by Equations (1) & (2)

 Calculate particle fitness

 Update pbest & gbest

 i = i + 1 // next particle

 end for

 j = j + 1 // next swarm

 end for

 Evaluate reinforcement signal by Equation (6)

 Update LA's probability vectors by Equations (3) & (4)

k = k+1 // next generation

until a terminate condition is met

Fig. 7. The pseudocode of the CPSOLA algorithm.

4.4 Analyzing the Adaptive Cooperative

Behavior of CPSOLA

Action selection of LA needed a comprehensive

perception of the environment. In this section, a 30–

dimensional Rosenbrock test function with 20 particles is

used to investigate the interaction between LA and

population during the evolution process. The fitness

comparison of CPSO-SK and PSO are plotted in Fig. 8.a.

By looking on zoomed boxes of specific parts of

evolution, we can observe that, in the earliest iterations of

CPSOLA algorithm, there is no obvious difference

between the fitness of two populations. The algorithm

probably could escape from the local minima after

reaching the middle iterations, so the policy is changed

adaptively and even during this part of evolution the

PSO's fitness even could be better than CPSO-SK's fitness.

Because of its cooperative search method of CPSOLA, in

the last generations, the CPSO-SK's fitness becomes

dominated and the algorithm converges faster than

original CPSO algorithm.

The variance of action probabilities are plotted in Fig.

8.b. Isolation action means the algorithm is just used its

primary population, hence the Cooperation action means

two populations perform information exchange. It can

be seen that CPSOLA algorithm has the ability to jump

out of the local optima, which is the result of hidden

diversity of PSO algorithm. Although the first and the

second population perform cooperation but, while the

learning automaton selects the isolation action, the PSO

population skips some of the iterations. Since the

cooperation dose not performs during each iteration, this

trend seems to be a little unwanted. But by looking from

the outer layer of cooperation, writing a bad fitness from

alternative population into primary one could increase

the diversity of primary population. In the middle

generations, while primary population is stagnated in a

local minimum, CPSOLA algorithm starts exchanging

the information between two populations. This means

that in a few generations, the secondary population

could overwrite its inferior solutions to the primary

population except the global best particle of each swarm

which is protected. The diversity of primary population

will increase significantly and the algorithm easily could

escape from the local minimum.

Fig. 8. (a) The CPSO-SK’s Swarm Best Position (sbest) versus the PSO’s

global best position (gbest). The horizontal and vertical axis of each box

represents the number of fitness evaluations (FEs) and the fitness value in
logarithmic scale, respectively. (b) Variance of LA’s actions probability. The

horizontal and vertical axis of each box represents the number of fitness

evaluations (FEs) and the probability value in Gaussian scale, respectively.

5. Experimental Study

5.1 Simulation Setup

In order to have a fair comparison, all the PSOs should

use a same number of fitness. This number is set to 20000.

All experiments were run 10 times; the means and

variances of best solution of these runs are reported. In

order to study the impact of population size; the

experiments repeated with 10, 15 and 20 particles per

Journal of Information Systems and Telecommunication, Vol. 2, No. 1, January-March 2014 7

population. All benchmark functions are 30–dimensional

optimization problems.

Observing the learning automaton's [10], [11] behavior

during the evolution process, three different kind of learning

algorithms are placed in CPSOLA algorithm [16]. The

detailed configurations of the reward and penalty parameters

are mentioned in Table I. As long as the LRP learning

algorithm acts as a moderate one among three of them, in the

following we just report the results of this learning algorithm.

In order to compare the proposed method, we simulate four

other PSOs including: standard PSO algorithm [2], Split swarm

Cooperative PSO (CPSO-S) [3], Hybrid Cooperative PSO

(CPSO-H) [3] and Comprehensive Learning PSO (CLPSO) [5].

The settings of these PSOs are briefly listed in Table II.

We choose five benchmark functions [3], [5] to run the

experimental tests. Among them, f0 (Rosenbrock) and f1

(Quadric) functions are simple unimodal problems which

have non-complex structure. The functions f2 (Ackley), f3

(Rastrigin) and f4 (Griewank) functions are highly

multimodal problems with many local optima positioned in

their grid. The details and mathematical formulation of

these benchmark functions are depicted in Table III.

Unimodal functions have simple structure and small

number of minima. These kinds of optimization benchmarks

can be easily optimized by deterministic optimization

algorithms which use gradient information of benchmark.

The first problem, function f0 is a non-convex function that

its global optima is placed in a long, narrow and hyperbolic

valley. This function can be treated as a multimodal function.

The function f1 is a simple function that usually used for

showing the power of optimization algorithms in function

optimization. It is a separable benchmark function that each

dimension could optimize independently.

Table I: The parameters configuration of learning automata. The LA

column indicates the learning algorithm. The Alpha and Beta columns

indicate different values of reward and penalty signals for each learning
algorithm. Also the Action set column shows two actions (cooperation

and isolation) of learning automata and the Initial probability of 0.5

indicates the raw probability of each action

LA Alpha Beta Action set Initial probability

LRP 0.01 0.01
{cooperation,

isolation}
{0.5, 0.5}

LRɛ P 0.001 0.01
{cooperation,

isolation}
{0.5, 0.5}

LRI 0.01 0.00
{cooperation,

isolation}
{0.5, 0.5}

Table II: The PSO algorithms used for simulation. Each algorithm has
unique parameter settings which are derived from its associated

reference. The Algorithm column lists the different PSOs that used for

simulation. The Parameters column includes the parameter used for
each PSO. The Topology column shows the special attribute of each

PSO and the Ref. column represents the associated reference number

Algorithm Parameters Topology Ref.

PSO w = 0.72, c1=c2=2.0 Global version [2]

CPSO-SK
w:0.9-0.4,

c1=c2=1.49,K=6
Cooperative swarms [3]

CPSO-HK
w:0.9-0.4,

c1=c2=1.49,K=6

Hybrid Cooperative

swarms
[3]

CLPSO
w:0.9-0.4,

c=1.49445,m=7

Comprehensive

Learning Strategy
[4]

CPSOLA
w:0.9-0.4,

c1=c2=1.49,K=6

Adaptive Hybrid

Cooperative swarms
[-]

Most of optimization heuristics suffer from the curse

of dimensionality [27]. This phenomenon appears when

the performance of algorithm degraded rapidly by

increasing the dimensionality of the problem. This

situation has two reasons: 1) By increasing the

dimensionality of benchmark functions, the number of

local minima increases exponentially. A successful

algorithm in this situation is one that can search more

promising regions of search space. 2) Some benchmark

functions are reshaped by increasing the number of

dimensions. For example, function f2 is a unimodal

function in low number of dimensions (2 dimensions).

Also, in this function by increasing the number of

dimensions it will convert to a multimodal function. Due

to the aforementioned reasons of curse of dimensionality,

some search strategies which may work well in low

dimensional benchmark functions can’t find the optimum

solution in high dimensional benchmark functions.

Multimodal benchmark function (f2-f4) has many local

optima and one global optimum. These benchmark functions

have complicated structure. The convergence speed of

multimodal functions is lower than unimodal functions.

The function f2 is a separable function with an

exponential term which covers the surface of function

with many local minima. It has one narrow global

optimum basin and many minor local optima. Simple

gradient descent algorithms are failed to optimize this

function, but any heuristic which can move through the

valley of the function can attain better results.

The function f3 is a complex multimodal problem with

large number of local optima. When attempting to solve

function f3, algorithms may easily fall into a local

optimum. Hence, an algorithm capable of maintaining

larger population diversity is likely to yield better results.

The function f4 has a ∏ (

√
)

 component

causing linkages among variables, thereby making it

difficult to reach the global optimum. An interesting

phenomenon of function f4 is that it is more difficult for

lower dimensions than higher dimensions.

Hasanzadeh, Meybodi & Ebadzadeh, A Learning Automata Approach to Cooperative Particle Swarm Optimizer

8

Table III: The formulation of benchmark functions. The Function column shows five different benchmark functions. The Formula column shows

the mathematical formulation of each benchmark function. The values listed in the Range column are used to specify the magnitude to which the initial
random particles are scaled. The Vmax column indicates the maximum velocity which is used to clamp the velocity of particles. The Threshold column

lists the function value threshold which is used as a stopping criterion in section 5-4. The Shape column shows a 2D view of each benchmark function
Shape Threshold Vmax Range Formula Function

0.01 2.048 [-2.048, 2.048]     
2 2 22

0 2 2 1 2 1

1

() 100 1

n

i i i

i

f x x x x 



   

f0 (Rosenbrock)

0.01 100 [-100, 100]

2

1

1 1

()
n i

j

i j

f x x
 

 
  

 
 

f1 (Quadric)

0.01 32 [-32, 32]

 

2

2

1

1

1
() 20exp 0.2

1
exp cos 2 20

n

i

i

n

i

i

f x x
n

x e
n







 
   

 
 

 
   

 





f2 (Ackley)

0.00001 5.12 [-5.12, 5.12]   2

3

1

() 10cos 2 10
n

i i

i

f x x x


  

f3 (Rastrigin)

0.01 600 [-600, 600]
2

4

1 1

1
() cos 1

4000

nn
i

i

i i

x
f x x

i 

 
   

 
 

f4 (Griewank)

Table IV: The average and standard deviation of PSO, CLPSO, CPSO-S6, CPSO-H6, CPSOLRP, CPSOLRɛ P and CPSOLRI algorithms over 10 independent
runs on 5 benchmark 30 – dimensional functions with 20000 Fitness Evaluations. The second column S lists the number of particles per swarm

Function

Algorithm
S f0 (Rosenbrock) f1 (Quadric) f2 (Ackley) f3 (Rastrigin) f4 (Griewank)

PSO 10 1.30E-01 ± 1.45E-01 1.08E+00 ± 1.41E+00 7.33E+00 ± 6.23E-01 8.27E+01 ± 5.64E+00 9.65E-01 ± 7.58E-01

15 5.53E-03 ± 6.19E-03 2.85E-72 ± 5.41E-72 4.92E+00 ± 5.81E-01 7.44E+01 ± 5.66E+00 2.62E-01 ± 1.61E-01

20 9.65E-03 ± 7.28E-03 2.17E-98 ± 4.20E-98 3.57E+00 ± 4.58E-01 6.79E+01 ± 4.84E+00 6.51E-02 ± 2.17E-02

CLPSO 10 5.12E+00 ± 3.23E+00 2.96E+02 ± 1.78E+02 6.45E+00 ± 1.42E+00 1.74E+01 ± 4.60E+00 7.27E-01 ± 1.28E+00

15 2.22E+00 ± 1.04E+00 9.79E+01 ± 6.98E+01 3.30E+00 ± 1.37E+00 7.26E+00 ± 2.85E+00 1.62E-02 ± 3.07E-02

20 1.88E+00 ± 3.26E-01 4.43E+01 ± 1.33E+01 1.91E+00 ± 4.33E-01 3.68E+00 ± 2.10E+00 5.64E-03 ± 1.40E-02

CPSO-S6 10 1.41E+00 ± 4.73E-01 4.63E-07 ± 6.14E-07 1.12E-06 ± 4.01E-07 0.00E+00 ± 0.00E+00 7.29E-02 ± 1.49E-02

15 2.47E+00 ± 7.00E-01 1.36E-05 ± 1.76E-05 1.11E-05 ± 4.53E-06 0.00E+00 ± 0.00E+00 6.90E-02 ± 1.56E-02

20 1.59E+00 ± 5.01E-01 1.20E-04 ± 8.99E-05 5.42E-05 ± 1.66E-05 0.00E+00 ± 0.00E+00 8.95E-02 ± 1.68E-02

CPSO-H6 10 1.94E-01 ± 2.63E-01 2.63E-66 ± 5.08E-66 9.42E-11 ± 7.58E-11 0.00E+00 ± 0.00E+00 6.75E-02 ± 1.40E-02

15 2.59E-01 ± 2.47E-01 9.00E-46 ± 1.09E-45 9.57E-12 ± 7.96E-12 0.00E+00 ± 0.00E+00 5.54E-02 ± 1.27E-02

20 4.21E-01 ± 3.21E-01 1.40E-29 ± 1.15E-29 2.73E-12 ± 2.03E-12 0.00E+00 ± 0.00E+00 5.24E-02 ± 1.19E-02

CPSOLRP 10 3.76E-23 ± 8.43E-23 5.09E-229 ± 0.00E+00 5.42E-14 ± 1.23E-14 0.00E+00 ± 0.00E+00 3.33E-02 ± 3.83E-02

15 1.33E-26 ± 4.78E-27 3.07E-302 ± 0.00E+00 4.99E-14 ± 7.64E-15 0.00E+00 ± 0.00E+00 2.38E-02 ± 3.07E-02

20 1.14E-26 ± 3.20E-27 3.32e-321 ± 0.00E+00 5.28E-14 ± 1.06E-14 0.00E+00 ± 0.00E+00 4.10E-02 ± 3.95E-02

Journal of Information Systems and Telecommunication, Vol. 2, No. 1, January-March 2014

9

5.2 Experiment 1: Function Optimization

Table IV shows the mean and standard deviation of 10

runs of each PSO on 30 dimensional problems. In

unimodal functions cooperative PSOs could reach good

results. The function f0 is a simple unimodal function and

its global optima places in the center of function. Also,

function f1 is a unimodal function with one global

optimum. Standard PSO performs better in f1 when

comparing with CPSO family and CLPSO. This implies

that the CPSO is less effective in solving simple problems.

In the other hand, due to adaptive switching mechanism

of CPOSLA, the algorithm could use the PSO’s

dimension-wise updating rule while using several swarms

to optimize different dimensions of search space

independently. By combining the results of these two

properties, CPSOLA achieves the best results on

unimodal functions (f0 and f1).

In Table IV, functions f2-f4 are multimodal functions.

In f2 and f3 CPSOLA and CPSO generally outperform

standard PSO, CLPSO that involves neither cooperative

swarms nor information exchange property. However, the

CPSOLA is most powerful and robust for these two test

problems. These results confirm the hypothesis that

cooperative swarms speed up the convergence of

CPSOLA algorithm and adaptive switching mechanism

helps the swarms jump out of the local optima and find

better solutions.

Different dimensions of CLPSO may learn from

different exemplars. Due to this, the CLPSO explores a

larger search space than the other PSOs in function f4.

The larger search space is not achieved randomly.

Instead, it is based on the historical search experience.

Because of this, the CLPSO performs comparably to or

better than other PSO variants on function f4. Note that

function f4 is known to become easier as the number of

dimensions increases.

The experiments which are conducted on 30–D

problems are repeated with 10, 15 and 20 particles. In

Table IV, the S entry indicates the population size. The

results show, increasing the number of particles and

keeping the problem's dimension fixed, will lead to

improve the fitness value of PSOs. Although from the

results of Table IV the resulting performance may vary

depending on the problem being optimized. There seems

to be no definitive value for the swarm size that is

optimal across all problems, so to avoid tuning the

algorithm to each specific problem, a compromise must

be reached. 15 particles were shown the best results for

CPSOLA, as populations of this size performed best by

a very slight margin when averaged across the entire

range of test problems.

5.3 Experiment 2: Convergence graph

Fig. 9 presents the convergence characteristics in

terms of the mean best fitness value of each algorithm for

all 30 – dimensional test function with 20 particles. The

comparisons in both Table IV and Fig. 9 show that, when

solving unimodal and multimodal problems, the CPSOLA

offers the best performance on most test functions. In

particular, the CPSOLA offers the highest accuracy on

functions f0, f1, f2 and f3. Furthermore, CLPSO shows the

best convergence characteristics on function f4.

(a)

Fig. 9. The mean convergence graph of 30-D benchmark functions. (a) f0 (Rosenbrock).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

-60

-50

-40

-30

-20

-10

0

10

FEs

lo
g
(f

it
n
e
s
s
)

PSO

CLPSO

CPSO-S6

CPSO-H6

CPSOL
RP

Hasanzadeh, Meybodi & Ebadzadeh, A Learning Automata Approach to Cooperative Particle Swarm Optimizer

10

(b)

(c)

(d)

Fig. 9. (Continued.) The mean convergence graph of 30-D benchmark functions. (b) f1 (Quadric). (c) f2 (Ackley). (d) f3 (Rastrigin).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

-800

-700

-600

-500

-400

-300

-200

-100

0

100

FEs

lo
g
(f

it
n
e
s
s
)

PSO

CLPSO

CPSO-S6

CPSO-H6

CPSOL
RP

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

-35

-30

-25

-20

-15

-10

-5

0

5

FEs

lo
g
(f

it
n
e
s
s
)

PSO

CLPSO

CPSO-S6

CPSO-H6

CPSOL
RP

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

FEs

lo
g
(f

it
n
e
s
s
)

PSO

CLPSO

CPSO-S6

CPSO-H6

CPSOL
RP

Journal of Information Systems and Telecommunication, Vol. 2, No. 1, January-March 2014 11

(e)

Fig. 9. (Continued.) The mean convergence graph of 30-D benchmark functions (e) f4 (Griewank)

The Rosenbrock function (f0) is a non-convex test

problem with a long, narrow and parabolic shaped flat

valley. From the set of flat lines of Fig. 9 – a (f0), CLPSO

and CPSO are easily get trapped in local minima while

standard PSO still improves its fitness value. Moreover,

CPSOLA could escape from the local minima till the

middle generations and acquire the best fitness value.

CPSOLA can find the best trail into the valley and almost

converges to the global minimum.

The Quadric function (f1) is a convex and unimodal

problem which has D local minima except for the global

one. In Fig. 9 – b (f1) CPSOLA and CPSO-H6 converge

better than other PSOs. Both of these cooperative

heuristics utilize two populations in order to optimize the

test problem. Since CPSOLA uses adaptive switching

mechanism while CPSO-H6 uses interleave switching

mechanism, the CPSOLA approach could exploit

beneficial properties of PSO and CPSO-Sk algorithms.

The Ackley function (f2) is a non-separable and

multimodal function. It has a flat outer region and a large

hole at the center. The function poses a risk for

optimization heuristics, particularly hill climbing and

gradient steepest descent algorithms. Fig. 9 – c (f2) shows

the convergence characteristics of 30– dimensional

Ackley' function with 20 particles. The first flat line in

Fig. 9 – c indicates that the Standard PSO becomes

trapped in a local minimum in early generations. Since

CLPSO has a large feasible search space, it is easily

trapped in a local minimum either; the second flat line

shows that. From the third and fourth flat lines which

belong to CPSO-S6 and CPSO-H6 algorithms, we can

observe that they have a fast convergence speed and these

results are due to the exhaustive dimension wise search

method of cooperative approach. The adaptive switching

mechanism of CPSOLA has a cost and the cost is the

slow convergence of the algorithm in this problem. Since

using the alternative population may suppress improving

the global best particle of primary population for a while,

CPSOLA is managed to continue improving its

performance very well. The best result belongs to

CPSOLRP, which its learning algorithm can find the

optimal policy faster than the others. Also definitive

decision making property of LRP learning algorithm

helps CPSOLRP algorithm to escape form the local

minima before it becomes too late.

The Rastrigin function (f3) is a non-convex, non-linear

and multimodal optimization problem that has large

number of local minima whose values increases with the

distance to the global minimum. Finding the minimum of

Ackley function is fairly difficult problem due to

Ackley’s large search space and its large number of local

minima. From Fig. 9 – d (f3), PSO and CLPSO are get

trapped in local minima in early generations but all

cooperative PSOs converge to global optimum. Also the

CPSOLA algorithm can converge faster than CPSO-S6.

The Griewank function (f4) is a multimodal and non-

separable test function. The algorithms which try to

optimize each variable of this benchmark function

independently, lead to failure. The global optimum of this

function is regularly distributed. From the results

presented in Fig. 10 – e (f4), it can be observed that all

PSO variants failed on Griewank function except for

CLPSO. The algorithm utilizes a tournament selection

heuristic for determining the exemplar in each dimension.

Figures 9 – a to e show the plot performance of the

PSO, CLPSO, CPSO-S6, CPSO-H6 and CPSOLRP

algorithms in 30-dimensional problems. The CPSOLA

algorithm uses a bi-action learning automaton with the LR-

P learning algorithm.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

-6

-4

-2

0

2

4

6

8

FEs

lo
g
(f

it
n
e
s
s
)

PSO

CLPSO

CPSO-S6

CPSO-H6

CPSOL
RP

Hasanzadeh, Meybodi & Ebadzadeh, A Learning Automata Approach to Cooperative Particle Swarm Optimizer

12

Table V: Robustness Analysis. The second column S lists the number of particles per swarm. The column Succeeded list the number of runs (out of 10)

that manage to attain a function value below the threshold in less than 20000 fitness evaluations, while the column FEs presents the number of function
evaluations needed on average to reach the threshold, calculated only for runs that Succeeded

Function

Algorithm
S

f0 (Rosenbrock) f1 (Quadric) f2 (Ackley) f3 (Rastrigin) f4 (Griewank)

Succeeded FEs. Succeeded FEs. Succeeded FEs. Succeeded FEs. Succeeded FEs.

PSO 10 10 55 1 1325 1 24 5 100 1 85

15 10 53 10 4209 4 77 8 128 4 409

20 10 48 10 2779 5 96 9 182 5 262

CLPSO 10 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A

15 0 N/A 0 N/A 0 N/A 0 N/A 7 5240

20 0 N/A 0 N/A 0 N/A 1 238 8 3391

CPSO-S6 10 10 1377 10 555 10 145 10 303 4 319

15 10 1306 10 450 10 118 10 253 2 138

20 10 1185 10 398 10 102 10 211 2 116

CPSO-H6 10 10 1067 10 248 10 61 10 103 2 40

15 10 1043 10 214 10 56 10 99 2 45

20 10 992 10 201 10 49 10 101 2 49

CPSOLRP 10 10 1149 10 306 10 77 10 143 1 33

15 10 1145 10 266 10 70 10 144 2 63

20 10 1075 10 258 10 65 10 137 3 116

5.4 Experiment 3: Robustness Analysis

This section compares the various PSOs to determine

their relative rankings using both robustness and

convergence speed as criteria. The term robustness is used

here to mean that the algorithm succeeded in reducing the

function value below a specified threshold using fewer

than the maximum allocated number of function

evaluations. A robust algorithm is one that can decrease

the fitness value below a specified threshold in a fewer

number of fitness evaluations during all runs [3].

Table V shows the robustness analysis for all test

functions. In function f0 none of the algorithms, with the

exception of CLPSO, have any difficulty reaching the

threshold during any of the runs. Table V further shows

that all the algorithm solved this problem in fewer than

2000 function evaluations, with the PSO algorithm

requiring the fewest function evaluations overall.

The CLPSO algorithm again consistently fails to reach

the threshold value of function f1 on all runs. Furthermore,

standard PSO with 10 particles per population is not a

robust algorithm, whereas all cooperative algorithms

reach the threshold during all runs.

The standard PSO and CLPSO have some difficulty

with f2 function, as can be seen in Table V. The function

f2 represents a very important result regarding the nature

of cooperative algorithms: the CPSOLA algorithm may

have somewhat slower rates of convergence compared

with CPSO-S6 and CPSO-H6 algorithms, but it is

significantly as robust as them in many cases. The

function f3 shows similar results to function f2. The

cooperative algorithms again perform admirably on the

Rastrigin function, but the PSO and CLSPO algorithms

are less robust in this test function.

The function f4 shows interesting results. It proves to

be hard to solve for all the algorithms, as can be seen in

Table V. None of cooperative algorithms and standard

PSO can perfectly optimize it, while CLPSO’s novel

learning strategy enables it to act more robust when

compared to other PSO variants. Also, no algorithm could

achieve a perfect score on this test function.

When looking at the number of function evaluations,

the CPSO-H6 algorithm was usually the fastest, followed

by the CPSOLA and the CPSO-S6. These results indicate

that there is a tradeoff between the convergence speed and

the robustness of the algorithm.

In 4 out of 5 test functions, if the number of fitness

evaluations reaches more than 5000 FEs, the algorithm

will not meet the robustness condition, while in function

f4 this observation rejects and CLPSO still satisfy the

robustness criteria.

5.5 Experiments Analysis

From Table IV, the CPSOLA performs better in 4 out

of 5 benchmark functions, where swarm size were 15.

This swarm size indicates that the algorithm does not

need big population in order to gain better results

compared with other PSO variants. Also the CPSOLA

performs better while optimizing both unimodal and

multimodal optimization benchmarks. Based on Table IV

results the algorithm performs better while optimizing

complex multimodal optimization benchmarks such as

Ackley and Rastrigin. More over from Table V, the

proposed algorithm is robust while optimizing complex

multimodal functions where there optimization problems

have complicated structures.

From the point of complexity analysis, the time

complexity standard PSO [2] is O (g * p * d) where n is

the number of generations, m is the number of designated

particles and d is the number of dimensions. Totally, we

assert that the time complexity of PSO is O(n
3
).

Journal of Information Systems and Telecommunication, Vol. 2, No. 1, January-March 2014 13

 In this context by considering the Fig. 7, as long as we

may have two choices in each generation the time complexity

of CPSOLA will be calculated through the following:

()* () ()
()*

()* ()

d

d

O s O s O p
O g

O s O s





(7)

Where is (7), s is the number of swarms (s<<p) and sd

is the number of member dimensions of s
th

 swarm

(sd<<d). In order to calculate the time complexity of

CPSOLA, we consider the maximum of the two terms

which is mentioned in (7), thus we have: O (g * S * Sd +

g * p). Totally we assert that the time of complexity of

CPSOLA is O(n
3/S4

+n
2
). As long as in each generation of

CPSOLA algorithm the sub regions of optimization space

is optimized through by swarms, the O(n
3
) value of PSO

is divided by this sub swarms. So, in the worst case that

the number of swarms is set to the whole population, the

time complexity will be O(n
3
+n

2
); where this value is

worse than the time complexity of standard PSO. But also

in the moderate case or best case where the solution space

is divided into sd swarms where

→

 the

algorithm may performs faster than standard PSO with

time complexity of O (n + n
2
).

6. Conclusions

In this paper we presented a cooperative particle

swarm optimizer with adaptive control on the outer layer

of cooperation named as CPSOLA. The results are shown

a significant improvement in performance and robustness.

Like CPSO-HK algorithm in CPSOLA we have two

populations: The first one named as primary population

and belongs to CPSO, while the secondary one belongs to

PSO algorithm. In the proposed approach a learning

automaton observe the global best fitness of primary

population and decide when to cooperate with secondary

one. Having a comprehensive scheme of problem to be

optimized, the learning automaton controls the evolution

process. Since the evolution of secondary population may

lag from the first one, the automaton brings an indirect

diversity while switching between its actions. In the real

world every action has a consequence; slow convergence

is the cost that we paid for our algorithm.

To evaluate the performance of CPSOLA, three different

kinds of experiments are conducted in this paper. The

experiments are carried out on five algorithms on the five

chosen test problems belonging to two classes. The

CPSOLA utilizes the LRP learning technique as its learning

algorithm. The CPSOLA performs the best in unimodal test

functions and two out of three multimodal test functions.

Totally the CPSOLA is shown the best performance in four

out of five test functions. Also, it is significantly a robust

algorithm with small standard deviation.

References
[1] R. Eberhart and J. Kennedy, “A new optimizer using

particle swarm theory,” in Proceedings of the Sixth

International Symposium on Micro Machine and Human

Science, 1995. MHS ’95, 1995, pp. 39–43.

[2] D. Bratton and J. Kennedy, “Defining a Standard for

Particle Swarm Optimization,” in IEEE Swarm Intelligence

Symposium, 2007. SIS 2007, 2007, pp. 120–127.

[3] F. van den Bergh and A. P. Engelbrecht, “A Cooperative

approach to particle swarm optimization,” IEEE

Transactions on Evolutionary Computation, vol. 8, no. 3,

pp. 225– 239, Jun. 2004.

[4] F. van den Bergh and A. P. Engelbrecht, “Cooperative

learning in neural networks using particle swarm optimizers,”

South African Computer Journal, pp. 84–90, 2000.

[5] J. Liang, A. Qin, P. N. Suganthan, and S. Baskar,

“Comprehensive learning particle swarm optimizer for

global optimization of multimodal functions,”

Evolutionary Computation, IEEE Transactions on, vol. 10,

no. 3, pp. 281–295, 2006.

[6] A. Nickabadi, M. M. Ebadzadeh, and R. Safabakhsh, “A

novel particle swarm optimization algorithm with adaptive

inertia weight,” Applied Soft Computing, vol. 11, no. 4, pp.

3658–3670, Jun. 2011.

[7] Z. H. Zhan, J. Zhang, Y. Li, and H. S. H. Chung,

“Adaptive particle swarm optimization,” Systems, Man,

and Cybernetics, Part B: Cybernetics, IEEE Transactions

on, vol. 39, no. 6, pp. 1362–1381, 2009.

[8] K. S. Narendra and M. A. L. Thathachar, Learning

automata: an introduction. Prentice-Hall, Inc., 1989.

[9] C. Ünsal, “Intelligent navigation of autonomous vehicles in

an automated highway system: Learning methods and

interacting vehicles approach,” Virginia Polytechnic

Institute and State University, 1997.

[10] A. B. Hashemi and M. R. Meybodi, “A note on the

learning automata based algorithms for adaptive parameter

selection in PSO,” Applied Soft Computing, vol. 11, no. 1,

pp. 689–705, Jan. 2011.

[11] A. Rezvanian and M. R. Meybodi, “LACAIS: Learning

Automata based Cooperative Artificial Immune System for

Function Optimization,” in 3rd International Conference

on Contemporary Computing (IC3 2010), Noida, India.

Contemporary Computing, CCIS, 2010, vol. 94, pp. 64–75.

[12] M. Sheybani and M. R. Meybodi, “PSO-LA: A New

Model for Optimization,” in Proceedings of 12th Annual

CSI Computer Conference of Iran, 2007, pp. 1162–1169.

[13] M. Hamidi and M. R. Meybodi, “New Learning Automata

based Particle Swarm Optimization Algorithms,” presented

at the Iran Data Mining Conference (IDMC), 2008, pp. 1–15.

[14] M. Hasanzadeh, M. R. Meybodi, and S. Shiry, “Improving

Learning Automata based Particle Swarm: An

Optimization Algorithm,” in 12th IEEE International

Symposium on Computational Intelligence and Informatics,

Budapest, 2011.

Hasanzadeh, Meybodi & Ebadzadeh, A Learning Automata Approach to Cooperative Particle Swarm Optimizer

14

[15] M. Hasanzadeh, M. R. Meybodi, and M. M. Ebadzadeh,

“Adaptive Parameter Selection in Comprehensive Learning

Particle Swarm Optimizer,” presented at the Symposium

on Artificial Intelligence and Signal Processing (AISP),

Tehran, Iran, 2013, pp. 1–10.

[16] M. Hasanzadeh, M. R. Meybodi, and M. M. Ebadzadeh,

“A robust heuristic algorithm for Cooperative Particle

Swarm Optimizer: A Learning Automata approach,” in

2012 20th Iranian Conference on Electrical Engineering

(ICEE), 2012, pp. 656 –661.

[17] M. Hasanzadeh, M. R. Meybodi, and M. M. Ebadzadeh,

“Adaptive cooperative particle swarm optimizer,” Appl

Intell, vol. 39, no. 2, pp. 397–420, Sep. 2013.

[18] M. Hasanzadeh and M. R. Meybodi, “Deployment of gLite

middleware: An E-Science grid infrastructure,” in 2013

21st Iranian Conference on Electrical Engineering (ICEE),

2013, pp. 1–6.

[19] M. Hasanzadeh and M. R. Meybodi, “Grid resource

discovery based on distributed learning automata,”

Computing, pp. 1–14.

[20] M. Potter and K. De Jong, “A cooperative coevolutionary

approach to function optimization,” Parallel Problem

Solving from Nature—PPSN III, pp. 249–257, 1994.

[21] J. Kennedy and R. Eberhart, “Particle swarm optimization,”

in , IEEE International Conference on Neural Networks,

1995. Proceedings, 1995, vol. 4, pp. 1942–1948.

[22] J. H. Holland, “Genetic algorithms,” Scientific American,

vol. 267, no. 1, pp. 66–72, 1992.

[23] T. Bäck and H. P. Schwefel, “An overview of evolutionary

algorithms for parameter optimization,” Evolutionary

computation, vol. 1, no. 1, pp. 1–23, 1993.

[24] M. F. Han, S. H. Liao, J. Y. Chang, and C. T. Lin,

“Dynamic group-based differential evolution using a self-

adaptive strategy for global optimization problems,”

Applied Intelligence, pp. 1–16, 2012.

[25] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary

optimization using cooperative coevolution,” Information

Sciences, vol. 178, no. 15, pp. 2985–2999, 2008.

[26] M. El-Abd, “A cooperative approach to The Artificial Bee

Colony algorithm,” in 2010 IEEE Congress on

Evolutionary Computation (CEC), 2010, pp. 1–5.

[27] R. Bellman, “Dynamic programming and Lagrange

multipliers,” Proceedings of the National Academy of Sciences

of the United States of America, vol. 42, no. 10, p. 767, 1956.

Mohammad Hasanzadeh received the B.Sc degree in Software
Engineering from South Khorasan Payame Noor University
(SKPNU), Birjand, Iran, in 2009 and M.Sc in Artificial Intelligence
from Amirkabir University of Technology (Tehran Polytechnic),
Tehran, Iran in 2013. His current research interests include
computational intelligence, Machine Learning and Grid
Computing.

Mohammad Reza Meybodi received the B.Sc and M.Sc degrees
in Economics from Shahid Beheshti University, Tehran, Iran, in
1973 and 1977, respectively. He also received the M.Sc and
Ph.D. degrees from the Oklahoma University, USA, in 1980 and
1983, respectively, in Computer Science. Currently he is a Full
Professor in Computer Engineering Department, Amirkabir
University of Technology (Tehran Polytechnic), Tehran, Iran. Prior
to current position, he worked from 1983 to 1985 as an Assistant
Professor at the Western Michigan University, and from 1985 to
1991 as an Associate Professor at the Ohio University, USA. His
research interests include channel management in cellular
networks, learning systems, parallel algorithms, soft computing
and software development.

Mohammad Mehdi Ebadzadeh received the B.Sc in Electrical
Engineering from Sharif University of Technology, Tehran, Iran in
1991 and M.Sc in Machine Intelligence and Robotic from
Amirkabir University of Technology (Tehran Polytechnic), Tehran,
Iran in 1995 and his Ph.D. in Machine Intelligence and Robotic
from Télécom ParisTech, Paris, France in 2004. Currently, he is
an Associate Professor in Computer Engineering Department,
Amirkabir University of Technology (Tehran Polytechnic), Tehran,
Iran. His research interests include evolutionary algorithms, fuzzy
systems, neural networks, artificial immune systems and artificial
muscles.

