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Abstract 
This paper presents a modification of Particle Swarm Optimization (PSO) technique based on cooperative behavior of 

swarms and learning ability of an automaton. The approach is called Cooperative Particle Swarm Optimization based on 

Learning Automata (CPSOLA). The CPSOLA algorithm utilizes three layers of cooperation which are intra swarm, inter 

swarm and inter population. There are two active populations in CPSOLA. In the primary population, the particles are 

placed in all swarms and each swarm consists of multiple dimensions of search space. Also there is a secondary 

population in CPSOLA which is used the conventional PSO's evolution schema. In the upper layer of cooperation, the 

embedded Learning Automaton (LA) is responsible for deciding whether to cooperate between these two populations or 

not. Experiments are organized on five benchmark functions and results show notable performance and robustness of 

CPSOLA, cooperative behavior of swarms and successful adaptive control of populations. 

 

Keywords: Particle Swarm Optimizer (PSO), Cooperative Particle Swarm Optimizer (CPSO), Learning Automata. 
 

 

1. Introduction 

Particle Swarm Optimization (PSO) [1], [2] is a 

population based technique inspired form shoaling 

behavior of fish and swarming behavior of insects. The 

mystery becomes evident when the simple rules that 

followed by individuals leads to emergent of well-

organized system. Cooperative PSO (CPSO) [3], [4] is a 

variation of the traditional PSO algorithm in which the 

dimensions of population divided into multiple separate 

swarms and each swarm try to optimize the problem 

separately. During the fitness evaluation of particles, the 

cooperation is occurred between swarms. Comprehensive 

Learning PSO (CLPSO) [5] is one of the most successful 

PSO improvements. A new learning strategy is used in 

CLPSO, where all particles' best information is used to 

update any other particle's velocity. The inertia weight [6] 

is one of the most important PSO's parameters, which is 

used to balance the global and local search of the 

population. Recently, an Adaptive PSO (APSO) [7] has 

introduced. APSO adaptively controls the PSO 

parameters by estimating the population distribution. 

Beside the adaptation of the inertia weight, APSO 

algorithm controls acceleration coefficients by four 

strategies named as exploration, exploitation, 

convergence and jumping out. 

A Learning Automaton (LA) [8], [9] is a machine 

which is adapted to changes in its environment. The 

adaption is the result of learning process of the automaton. 

Recently learning automata is used for adaptive parameter 

selection in Evolutionary Algorithms (EA) [10], [11]. Also 

a new hybrid method of optimization which called PSO-

LA [12]–[17] has been emerged. In PSO-LA algorithms an 

LA or a group of learning automata is assigned to the 

whole population or each particle of the population. LA or 

group of LAs controls the path and velocity of the particles. 

Moreover, LA has application in Grid computing [18]. In 

[19], Distributed Learning Automata (DLA) has been used 

for Grid resource discovery. 

CPSO family [3] consists of four algorithms: CPSO-S, 

CPSO-SK, CPSO-H and CPSO-HK where K is the split 

factor parameter which specifies the length of desired 

solution vector. Typically, while optimizing an N – 

dimensional problem by using CPSO-S, K will be set to N 

(number of dimensions). Having both beneficial 

characteristics of PSO and CPSO-SK, CPSO-HK is emerged 

as the combination of these two algorithms. It is a tempting 

idea to have a mechanism which is able to understand when 

to switch between PSO and CPSO-SK [3]. 

In [16] the first attempt to improve this hybridization 

of PSO and CPSO algorithms is done by embedding an 

automaton as a toolbox of the switching mechanism. 

Furthermore, in this paper we deeply investigate the 

behavior of discussed learning automata approach for 

CPSO family by a set of diverse experiments.  
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The paper is organized as follow: section 2 reviews two 

PSO heuristics. Section 3 introduces learning automaton 

and its application in PSO. Section 4 describes cooperative 

PSO based on learning automata. Experimental setup and 

simulation results are presented in section 5. 

2. Particle Swarm Optimizer (PSO) 

2.1 Conventional formulation of PSO 

Particle Swarm Optimization (PSO) [1], [2] consists 

of a population of particles in which each particle 

represents a feasible solution vector. Assume that we 

have an N–dimensional problem space with M particles 

which are initialized in a feasible search space. The 

velocity, position and best previous position of ith 

particle are respectively shown by       
    

      
  , 

      
    

      
   and 

              
        

          
  . Also the best 

position of the population is 

                              . The velocity   
  

and position   
  of the dth dimension of the ith particle are 

manipulated through the following [5]: 

 

 

1

2

1

2

d d d d d

i i i i i

d d d

i i

V w V c rand pbest X

c rand gbest X

     

   
 

(1) 

d d d

i i iX X V 
 (2) 

Where c1 and c2 are acceleration constants which 

absorb the particles to pbest and gbest positions.   [0,1] 

is inertia weight which controls the global and local 

searches. rand1 and       [0,1] are two random 

numbers generated for each dimension of the particles. 

The algorithm of the original PSO is given in Fig. 1. 

2.2 Cooperative Learning in PSO 

The idea of cooperative learning was first 

implemented in the field of Genetic Algorithm (GA) by 

Potter [20]. Potter suggested that for optimizing the 

designated target function, each dimension of the fitness 

function could be optimized by a distinct population and 

be evaluated in form of an N–dimensional vector through 

the fitness function. PSO and GA both suffer from the 

Curse of dimensionality. Using cooperative technique in 

PSO may lead to promising results. Recently The concept 

of cooperation mapped into PSO technique. Cooperative 

behavior in PSO was first introduced by Van den Bergh 

[4]. In cooperative PSO instead of having one swarm of 

M particles trying to optimize the designated N–

dimensional optimization problem, we have N swarms of 

M particles which working on an isolated 1–dimensional 

problem. In this approach we should use a context vector 

to build a required N–dimensional vector to evaluate each 

of the swarms. 

The family of CPSO algorithm proposed in [3] 

consists of the following algorithms: CPSO-S, CPSO-SK, 

CPSO-H and CPSO-HK. In CPSO-S algorithm each 

dimension of search space is considered as a swarm of M 

particles and all swarms are trying to find a better solution 

vector. If there is any correlation in the population, it 

would be desirable to gather the correlated dimensions in 

the same swarm. The idea of correlated variables leads to 

emergence of split factor parameter which tuned the 

swarm size. Now, instead of splitting the population into 

N swarms of 1-dimensional vectors like CPSO-S, we 

could have K swarms of C–dimensional vectors (C<N) 

like CPSO-SK. Standard PSO algorithm has the ability of 

escaping from local minima and CPSO-SK algorithm has 

fast convergence speed. Merging both beneficial 

characteristic of this two algorithms leads to appearance 

of CPSO-HK algorithm. CPSO-HK algorithm consists of 

two phases, in 1
st
 phase CPSO-SK run and the information 

exchange performs from CPSO-SK half to PSO half of 

algorithm. At 2
nd

 phase, PSO run and information 

exchange form PSO half to CPSO-SK half performs. Note 

that each phase performs in a separate iteration.  

Cooperative PSO [3], [4] divides the initial population 

into some subpopulations and each of these subswarms 

optimizes their designated dimensions individually. There 

are two layers of cooperation in a cooperative PSO. The 

first layer lies under the collaborative behavior of 

particles in specific dimensions and the second one is the 

schema that produces a solution vector by means of 

sharing the best information of each subpopulation to 

constitute a valid solution vector. In order to evaluate 

each member of the subpopulation, one requires 

constructing a context vector which aggregates the best 

solution of each subpopulation within an N-dimensional 

vector. Typically to evaluate the current subpopulation, 

the corresponding dimensions filled with the position of 

particle and the other dimensions are considered constant. 

Fig. 2 is the cooperative PSO pseudocode. 

 
Algorithm 1 Standard PSO  

for each generation k do 

      for each particle i do 

 Update velocity of ith particle by (1) 

 Update position of ith particle by (2) 

 Calculate particle fitness f(xi) 

 Update pbesti and gbest 

 i = i+1 // next particle 

      end for 

      k = k+1 // next generation 

end for 

Fig 1. The pseudocode of the standard PSO 

Algorithm 2 Cooperative PSO (CPSO) 

define 

Split N-dimensional search space into j subpopulations. 

Calculate the best individual of each subpopulation (sbest). 

Construct a Context Vector (CV) through the best individuals 

of each subpopulation: 

CV = [sbest1, sbest2, …, sbestj] 

for each generation k do 

      for each subpopulation j do 

            for each particle i do 

Replace current particle of jth Subpopulation by its 
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corresponding positions in the CV 

Evaluate the N-dimensional output vector through 

the fitness function. 

i = i+1 // next particle 

end for 

Update sbestj. 

j = j+1 // next swarm 

end for 

k = k+1 // next generation 

end for 

Fig. 2 The pseudocode of the cooperative PSO 

2.3 Cooperative based PSO algorithms 

As well as cooperative PSO [21] and GA [22], the 

cooperative approach is also implemented in other EAs 

such as: Evolutionary Strategy (ES) [23], Differential 

Evolution (DE) [24], [25] and Artificial Bee Colony 

(ABC) [26]. The following are four recent advances in the 

context of cooperative PSO: 

The Cooperative Coevolutionary ES (CCES) [23] 

divides the population of ES into some subspecies and 

lets them evolve. By means of a migration operator, 

CCES could hybridize the cooperative evolutionary 

behavior of CPSO with ES. The proposed model controls 

the interaction of subspecies properly and exhibits good 

performance results. 

The Cooperative Coevolutionary DE (CCDE) [24] 

partitioned the problem into several sub problems and 

allocated a subpopulation to each of them. In [25], a 

randomized grouping mechanism introduced and an 

adaptive weighting strategy used in order to adapt the 

separated components. The idea was accomplished to 

bring the interacted variables into a similar subcomponent.  

The self-adaptive neighborhood search into DE 

(SaNSDE) could tackle the non-separable problems with 

more than 1000 dimensions inside. 

The cooperative approach of Potter is exerted into 

ABC and Cooperative ABC (CABC) [26] is emerged. 

Like two variants of CPSO, he introduced two versions of 

split swarm and hybrid for CABC. The CABC_S 

algorithm can efficiently optimize the separable problems 

and the CABC_H algorithm has the ability to escape from 

the local minima. 

2.4 Evaluation Scheme of PSO versus CPSO 

The key characteristic of Standard PSO [2] and 

cooperative PSO [3] is related to their corresponding 

population. The standard PSO contains a single 

population where this single population is divided into 

multiple swarms in cooperative PSO.  

There is a paradigm in conventional PSO algorithm 

which could be extended to Cooperative PSO: In order to 

find a proper solution vector, each particle of the swarm 

fly through an N–dimensional search space by N values 

corresponded to each dimension of the space. To 

understand this phrase deeply, consider the population as 

a matrix [M N] where M and N respectively represent the 

number of particles and dimensions, respectively as: 

                               (see Fig. 3). In this 

framework, velocity and position of the standard PSO [2] 

population were updated row wise. The interpretation of 

this framework in CPSO [3] is quite different from that of 

standard PSO. In CPSO the population is optimized 

column wise (dimension wise) with the dimension of each 

particle being evaluated by a context vector (CV) which is 

built from the best particle of corresponding swarm and 

the best particles of other swarms. 

     
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Fig. 3 Comprehensive view of the PSO population. f(Pi) represents the 

ith particle of population which evaluates through the traditional PSO 

mechanism and f(Pi,Sj) indicates the evaluation process of the ith particle 
(Pi) of jth swarm (Sj) of CPSO population. 

3. Learning Automata (LA) 

3.1 Conventional Formulation of LA 

Learning Automata [8], [9] is a stochastic 

optimization technique from the family of Reinforcement 

Learning (RL) algorithms.  Having enough interaction 

with the unknown environment, elegance emerges and the 

optimal policy will be chosen. Fig. 4 shows how 

automaton interacts with its environment. A study of the 

learning process of LA in a random environment is 

comprehensively reported in [8]. 

Random 

Environment

Learning 

Automata

reinforcement signal

action

  

Fig. 4. The interaction between learning automata and environment. 

Learning automata [8], [9] are divided into two groups 

of fixed-structure and variable-structure automata. A 

Variable-Structure LA (VSLA) is represented by a 

quadruple          , Where             is a set of 

actions,             is a set of inputs, p={p1,…,pr} is 

the probability vector corresponds to each action and 

                         is the learning algorithm. 

If p(n+1) is a linear function of p(n) then the 

reinforcement scheme should be linear; otherwise it is 

nonlinear. In the simplest form of VSLA consider an 

automaton with r actions in a stationary environment 

where         is included in inputs. After selecting the 

action by the automaton, the reinforcement signal will 

receive from the environment. When the positive 
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response       received, the action probabilities are 

updated through (3): 

 
    
   

. 1
1

. 1

j j

j

j

p n a p n if i j
p n

p n a if i j

   
  

   

(3) 

When the negative response       received from the 

environment, action probabilities are updated through (4): 

 
   
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. 1

1
1 .

1

j

j

j

p n b if i j

p n b
b p n if i j

r

  


  
  

  

(4) 

The a and b are called learning parameters and they 

are associated with the reward and penalty responses. If a 

and b are equal, the learning scheme is called LR-P (Linear 

Reward-Penalty). If the learning parameter b is set to 0, 

then the learning scheme is named LR-I (Linear Reward-

Inaction). And finally if the learning parameter b is much 

smaller than a, the learning scheme is called      (Linear 

Reward-epsilon-Penalty). 

3.2 LA based PSO algorithms 

Parameter adaption [10], [11] is one of the most 

difficult tasks in EAs. As there are multiple parameters in 

PSO, it needs a mechanism to tune them during the 

evaluation of the population. In [10] a study of adaptive 

PSO parameter selection is conducted. Also, embedding 

learning automata in the population of PSO is another 

improvement; the model is called PSO-LA. In PSO-LA 

model an automaton is used to configure the search 

behavior of particles and adjust the velocity and position 

of them based on optimal selected policy. In coarse-

grained PSO-LA [11] algorithms, an LA takes the 

responsibility of steering the whole swarm (|LA|=1). 

Since coarse-grained PSO-LA algorithms are trapped into 

local minima, in fine-grained PSO-LA algorithms [13], 

[14], learning automata are assigned to each particle of 

the swarm (|LA|=|population size|). This technique gives 

more maneuverability to the particles for searching 

through the search space. Some improved PSOs using LA 

are illustrated in the following: 

A Dynamic Particle Swarm Optimization based on a 

3-action Learning Automata (DPSOLA) introduced in  

[14]. The embedded learning automaton accumulates the 

information from individuals, local best and global best 

particles then combines them to navigate the particle 

through the problem space. 

One variant of PSO is Comprehensive Learning 

Particle Swarm Optimizer (CLPSO) [5], which uses all 

individuals’ best information to update their velocity. The 

novel strategy of CLPSO enables population to read from 

exemplars for specified generations which is called 

refreshing gap m. In [15], two classes of Learning 

Automata (LA) developed in order to study the learning 

ability of automata for CLPSO refreshing gap tuning. In 

the first class, a learning automaton is assigned to the 

population and in the second one each particle has its own 

personal automaton. 

The cooperative PSO based on LA which introduced 

in [16] is the first version of CPSOLA. This algorithm 

utilizes both beneficial characteristics of PSO and CPSO 

by employing a learning automaton as a realtime decision 

making optimization tool. 

The Adaptive Cooperative Particle Swarm Optimizer 

(ACPSO) [17] which facilitates cooperation technique 

through usage of LA algorithm. Cooperative learning 

strategy of ACPSO optimizes the problem 

collaboratively and evaluates it in different contexts. In 

ACPSO algorithm, a set of learning automata associated 

with dimensions of the problem are trying to find the 

correlated variables of the search space and optimize the 

problem intelligently. This collective behavior of 

ACPSO will fulfill the task of adaptive selection of 

swarm members. 

4. Cooperative Particle Swarm Optimizer 

based on Learning Automata (CPSOLA) 

4.1 Presenting Non-constraint Optimization 

Problems 

Optimization is an approach to solve the complicated 

problems, like scheduling tasks. The framework of an N-

dimensional, non-constraint optimization problem is as 

follows [5]: 

  
1

1min ; n

n

x

f x x x x x

x

 
 

  
 
    

(5) 

The optimization aim is to seek the optima in a search 

space by generating several feasible solutions and 

selecting the optimum one. Usually traditional techniques 

like dynamic programming and greedy algorithms are 

applied to optimization problems. In dynamic 

programming by using divide and conquer method, in 

each interval a portion of the search space will be omitted 

and the optimal solution will extract from the residual 

information. Also, during some steps of greedy 

algorithms, the most optimal solution will be selected by 

an excessive policy. In both of these listed algorithms, the 

election of each step is performed the local search with 

the hope of discovering the best solution. The lake of 

retaining the exploration and exploitation equilibrium and 

also excreting a segment of the search space in each 

epoch, are the defects of the conventional optimization 

approaches. 

 

CPSO-SK cooperation 

 cooperationC
P

S
O

-H
K

PSO

 

Fig. 5. Structural view of the CPSO-HK algorithm. 
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4.2 Introducing the Non-adaptive Cooperative 

Scenarios 

The CPSO model consists of four algorithms, from 

now on, our study specifically focused on CPSO-HK 

algorithm which covers the other three ones. Fig. 5 shows 

the structure of CPSO-HK algorithm. "When to switch 

between CPSO-SK and PSO?" is a question proposed by 

Van den Bergh in [3]. For designing such a robust, 

general and adaptive mechanism consider the following 

scenarios in CPSO-HK algorithm: 

Scenario 1: At the earliest generations, the particles 

are scattered in the search space. It is desired to have fast 

global search of CPSO-SK while any local minima are 

placed around the particles. At the middle iterations of the 

algorithm, while getting trapped in a local minimum, 

using PSO is much beneficial to escape from it. 

Scenario 2: Immediately after escaping from local 

minima, it is safe for the algorithm to make use the high 

speed of CPSO-SK till reaching the next local minimum. 

Scenario 3: Sometimes the information exchange that 

is occurred in each generation of CPSO-HK algorithm is 

unnecessary. This unnecessary amount of cooperation 

defects the run time performance of the CPSO-HK. 

Reviewing the discussed scenarios, interleave 

execution of CPSO-SK and PSO seems to be a naïve form 

of cooperation between these two algorithms. A proper 

choice is to form an adaptive cooperation between CPSO-

SK and PSO algorithms. By using one learning automaton, 

we could have an adaptive switching mechanism which 

intelligently switches between CPSO-SK and PSO 

algorithms. As well as preserving the positive 

characteristics of CPSO-SK and PSO algorithms, 

CPSOLA algorithm significantly reduce the amount of 

information exchange. 

4.3 Describing the Adaptive Cooperative 

Behavior of CPSOLA 

Like CPSO-HK in CPSOLA, we have two separate 

populations. The CPSO-SK population is our primary 

population and the PSO population is the secondary one. 

Information exchange between two populations is 

postponed to critical generations because there is an 

adaptive switching mechanism between these two 

algorithms. A critical generation is a part of evolution 

process in which the cooperation between CPSO-SK 

algorithm and PSO is vital. The CPSOLA algorithm 

presents two advantages in contrast to CPSO-Hk: 

1) CPSOLA simultaneously utilizes both beneficial 

characteristics of PSO and CPSO-Sk. It inherits fast 

convergence speed of CPSO and also easily escapes from 

local minima by utilizing PSO’s gbest and pbest 

information. 

2) CPSOLA adaptively uses both CPSO-SK and PSO in 

order to maintain marginal performance while CPSO-HK 

interleave this algorithms without any environment 

perception. 

3) CPSOLA balance the global and local search by 

maintaining population diversity between PSO and CPSO. 

The scheme of adaptive switching mechanism of 

CPSOLA is shown in Fig. 6. The automaton has two actions: 

1) Cooperation between primary and secondary population. 

2) Isolation and just using primary population. In other 

words: 1) Running CPSO-HK algorithm. 2) Running CPSO-

SK algorithm. 

Learning 

Automata

Isolation and just using 

primary population

Cooperation between primary 

and secondary populations

Primary 

Population

Calculating 

reinforcement signal

population response

updating learning automata’s probability vectors

1

r

1

r

 

Fig. 6. Schematic view of decision making by learning automata 

In each generation of CPSOLA algorithm, the 

automaton decides whether to start the alternative 

population (PSO population) or not. While having enough 

interactions with the populations, the automaton perceives 

when to switch between two algorithms. In the following 

we listed the five main differences between the CPSOLA 

model and CPSO model: 1) Instead of having unnecessary 

information exchange in each generation, preserve it for 

critical generations. 2) Reduced the workload of algorithm 

and made the execution time faster. 3) Preserve CPSO-SK 

fast convergence speed property. 4) Keep the PSO’s 

ability to escape from local minima. 5) Preserve the 

diversity of population. 

Equation (6) is the criterion to evaluate the 

reinforcement signal in CPSOLA algorithm. If in the 

current iteration global best position of primary 

population (CPSO-SK swarm best particle) improved then 

the automata's selected action would get the award and 

the automaton will be punished otherwise. Since the 

reinforcement signal is calculated in the context of 

primary population, the global best position of secondary 

population (PSO global best particle) do not have a direct 

influence on evaluating this signal. 

 
1

0

1

i i
if fitness Sbest Sbest

Otherwise








  

(6) 

Fig. 7 is the pseudocode of CPSOLA algorithm. LA 

has two actions: first, cooperation or information 

exchange between CPSO and PSO population and second, 

isolation or evolution of CPSO population. In CPSOLA 

algorithm, an LA determines the time to perform 

cooperation between primary and secondary populations. 

At the earliest generations the LA selects actions 

randomly but after passing middle iterations the ultimate 

perception of the optimization problem occurs and the LA 

could accurately detects the time for switching between 

these two populations. This switching time is a key 

advantage of CPSOLA algorithm in contrast to the 

CPSO-HK interleave switching strategy. 
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Algorithm 3 Cooperative PSO based on LA (CPSOLA) 

define 

    Initialize primary population with K swarms: P 

    Initialize secondary population: Q 

    Initialize LA with 2 actions: {cooperation, isolation} 

do 

    Select an action 

    if the selected action is cooperation then 

        for each swarm               

           for each particle           
           Update particle position by Equations (1) & (2) 

                Calculate particle fitness 

                Update pbest & gbest 

                i = i + 1 // next particle 

            end for 

             j = j + 1 // next swarm 

        end for 

        Select a random particle form Q to write 

        for each particle             
           Update particle position by Equations (1) & (2) 

            Calculate particle fitness 

            Update pbest & gbest 

            i = i + 1 // next particle 

        end for 

        for each swarm              

            Select a random particle form P to write 

        end for 

    else if the selected action is isolation then 

        for each swarm              

           for each particle          
             Update particle position by Equations (1) & (2) 

                Calculate particle fitness 

                Update pbest & gbest 

                i = i + 1 // next particle 

            end for 

             j = j + 1 // next swarm 

        end for 

    Evaluate reinforcement signal by Equation (6) 

    Update LA's probability vectors by Equations (3) & (4) 

k = k+1 // next generation 

until a terminate condition is met 

Fig. 7. The pseudocode of the CPSOLA algorithm. 

4.4 Analyzing the Adaptive Cooperative 

Behavior of CPSOLA 

Action selection of LA needed a comprehensive 

perception of the environment. In this section, a 30–

dimensional Rosenbrock test function with 20 particles is 

used to investigate the interaction between LA and 

population during the evolution process. The fitness 

comparison of CPSO-SK and PSO are plotted in Fig. 8.a. 

By looking on zoomed boxes of specific parts of 

evolution, we can observe that, in the earliest iterations of 

CPSOLA algorithm, there is no obvious difference 

between the fitness of two populations. The algorithm 

probably could escape from the local minima after 

reaching the middle iterations, so the policy is changed 

adaptively and even during this part of evolution the 

PSO's fitness even could be better than CPSO-SK's fitness. 

Because of its cooperative search method of CPSOLA, in 

the last generations, the CPSO-SK's fitness becomes 

dominated and the algorithm converges faster than 

original CPSO algorithm. 

The variance of action probabilities are plotted in Fig. 

8.b. Isolation action means the algorithm is just used its 

primary population, hence the Cooperation action means 

two populations perform information exchange. It can 

be seen that CPSOLA algorithm has the ability to jump 

out of the local optima, which is the result of hidden 

diversity of PSO algorithm. Although the first and the 

second population perform cooperation but, while the 

learning automaton selects the isolation action, the PSO 

population skips some of the iterations. Since the 

cooperation dose not performs during each iteration, this 

trend seems to be a little unwanted. But by looking from 

the outer layer of cooperation, writing a bad fitness from 

alternative population into primary one could increase 

the diversity of primary population. In the middle 

generations, while primary population is stagnated in a 

local minimum, CPSOLA algorithm starts exchanging 

the information between two populations. This means 

that in a few generations, the secondary population 

could overwrite its inferior solutions to the primary 

population except the global best particle of each swarm 

which is protected. The diversity of primary population 

will increase significantly and the algorithm easily could 

escape from the local minimum. 

 

 

Fig. 8. (a) The CPSO-SK’s Swarm Best Position (sbest) versus the PSO’s 

global best position (gbest). The horizontal and vertical axis of each box 

represents the number of fitness evaluations (FEs) and the fitness value in 
logarithmic scale, respectively. (b) Variance of LA’s actions probability. The 

horizontal and vertical axis of each box represents the number of fitness 

evaluations (FEs) and the probability value in Gaussian scale, respectively. 

5. Experimental Study 

5.1 Simulation Setup 

In order to have a fair comparison, all the PSOs should 

use a same number of fitness. This number is set to 20000. 

All experiments were run 10 times; the means and 

variances of best solution of these runs are reported. In 

order to study the impact of population size; the 

experiments repeated with 10, 15 and 20 particles per 
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population. All benchmark functions are 30–dimensional 

optimization problems. 

Observing the learning automaton's [10], [11] behavior 

during the evolution process, three different kind of learning 

algorithms are placed in CPSOLA algorithm [16]. The 

detailed configurations of the reward and penalty parameters 

are mentioned in Table I. As long as the LRP learning 

algorithm acts as a moderate one among three of them, in the 

following we just report the results of this learning algorithm. 

In order to compare the proposed method, we simulate four 

other PSOs including: standard PSO algorithm [2], Split swarm 

Cooperative PSO (CPSO-S) [3], Hybrid Cooperative PSO 

(CPSO-H) [3] and Comprehensive Learning PSO (CLPSO) [5]. 

The settings of these PSOs are briefly listed in Table II. 

We choose five benchmark functions [3], [5] to run the 

experimental tests. Among them, f0 (Rosenbrock) and f1 

(Quadric) functions are simple unimodal problems which 

have non-complex structure. The functions f2 (Ackley), f3 

(Rastrigin) and f4 (Griewank) functions are highly 

multimodal problems with many local optima positioned in 

their grid. The details and mathematical formulation of 

these benchmark functions are depicted in Table III. 

Unimodal functions have simple structure and small 

number of minima. These kinds of optimization benchmarks 

can be easily optimized by deterministic optimization 

algorithms which use gradient information of benchmark. 

The first problem, function f0 is a non-convex function that 

its global optima is placed in a long, narrow and hyperbolic 

valley. This function can be treated as a multimodal function. 

The function f1 is a simple function that usually used for 

showing the power of optimization algorithms in function 

optimization. It is a separable benchmark function that each 

dimension could optimize independently. 

Table I: The parameters configuration of learning automata. The LA 

column indicates the learning algorithm. The Alpha and Beta columns 

indicate different values of reward and penalty signals for each learning 
algorithm. Also the Action set column shows two actions (cooperation 

and isolation) of learning automata and the Initial probability of 0.5 

indicates the raw probability of each action 

LA Alpha Beta Action set Initial probability 

LRP 0.01 0.01 
{cooperation, 

isolation} 
{0.5, 0.5} 

LRɛ P 0.001 0.01 
{cooperation, 

isolation} 
{0.5, 0.5} 

LRI 0.01 0.00 
{cooperation, 

isolation} 
{0.5, 0.5} 

Table II: The PSO algorithms used for simulation. Each algorithm has 
unique parameter settings which are derived from its associated 

reference. The Algorithm column lists the different PSOs that used for 

simulation. The Parameters column includes the parameter used for 
each PSO. The Topology column shows the special attribute of each 

PSO and the Ref. column represents the associated reference number 

Algorithm Parameters Topology Ref. 

PSO w = 0.72, c1=c2=2.0 Global version [2] 

CPSO-SK 
w:0.9-0.4, 

c1=c2=1.49,K=6 
Cooperative swarms [3] 

CPSO-HK 
w:0.9-0.4, 

c1=c2=1.49,K=6 

Hybrid Cooperative 

swarms 
[3] 

CLPSO 
w:0.9-0.4, 

c=1.49445,m=7 

Comprehensive 

Learning Strategy 
[4] 

CPSOLA 
w:0.9-0.4, 

c1=c2=1.49,K=6 

Adaptive Hybrid 

Cooperative swarms 
[-] 

Most of optimization heuristics suffer from the curse 

of dimensionality [27]. This phenomenon appears when 

the performance of algorithm degraded rapidly by 

increasing the dimensionality of the problem. This 

situation has two reasons: 1) By increasing the 

dimensionality of benchmark functions, the number of 

local minima increases exponentially. A successful 

algorithm in this situation is one that can search more 

promising regions of search space. 2) Some benchmark 

functions are reshaped by increasing the number of 

dimensions. For example, function f2 is a unimodal 

function in low number of dimensions (2 dimensions). 

Also, in this function by increasing the number of 

dimensions it will convert to a multimodal function. Due 

to the aforementioned reasons of curse of dimensionality, 

some search strategies which may work well in low 

dimensional benchmark functions can’t find the optimum 

solution in high dimensional benchmark functions. 

Multimodal benchmark function (f2-f4) has many local 

optima and one global optimum. These benchmark functions 

have complicated structure. The convergence speed of 

multimodal functions is lower than unimodal functions. 

The function f2 is a separable function with an 

exponential term which covers the surface of function 

with many local minima. It has one narrow global 

optimum basin and many minor local optima. Simple 

gradient descent algorithms are failed to optimize this 

function, but any heuristic which can move through the 

valley of the function can attain better results.  

The function f3 is a complex multimodal problem with 

large number of local optima. When attempting to solve 

function f3, algorithms may easily fall into a local 

optimum. Hence, an algorithm capable of maintaining 

larger population diversity is likely to yield better results. 

The function f4 has a ∏    (
  

√ 
) 

    component 

causing linkages among variables, thereby making it 

difficult to reach the global optimum. An interesting 

phenomenon of function f4 is that it is more difficult for 

lower dimensions than higher dimensions. 
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Table III: The formulation of benchmark functions. The Function column shows five different benchmark functions. The Formula column shows 

the mathematical formulation of each benchmark function. The values listed in the Range column are used to specify the magnitude to which the initial 
random particles are scaled. The Vmax column indicates the maximum velocity which is used to clamp the velocity of particles. The Threshold column 

lists the function value threshold which is used as a stopping criterion in section 5-4. The Shape column shows a 2D view of each benchmark function 
Shape Threshold Vmax Range Formula Function 

 

0.01 2.048 [-2.048, 2.048]     
2 2 22

0 2 2 1 2 1

1

( ) 100 1

n

i i i

i

f x x x x 



   
 

f0 (Rosenbrock) 

 

0.01 100 [-100, 100] 

2

1

1 1

( )
n i

j

i j

f x x
 

 
  

 
 

 

f1 (Quadric) 

 

0.01 32 [-32, 32] 

 

2

2

1

1

1
( ) 20exp 0.2

1
exp cos 2 20

n

i

i

n

i

i

f x x
n

x e
n







 
   

 
 

 
   

 




 

f2 (Ackley) 

 

0.00001 5.12 [-5.12, 5.12]   2

3

1

( ) 10cos 2 10
n

i i

i

f x x x


  
 

f3 (Rastrigin) 

 

0.01 600 [-600, 600] 
2

4

1 1

1
( ) cos 1

4000

nn
i

i

i i

x
f x x

i 

 
   

 
 

 

f4 (Griewank) 

Table IV: The average and standard deviation of PSO, CLPSO, CPSO-S6, CPSO-H6, CPSOLRP, CPSOLRɛ P and CPSOLRI algorithms over 10 independent 
runs on 5 benchmark 30 – dimensional functions with 20000 Fitness Evaluations. The second column S lists the number of particles per swarm 

Function 

Algorithm 
S f0 (Rosenbrock) f1 (Quadric) f2 (Ackley) f3 (Rastrigin) f4 (Griewank) 

PSO 10 1.30E-01 ± 1.45E-01 1.08E+00 ± 1.41E+00 7.33E+00 ± 6.23E-01 8.27E+01 ± 5.64E+00 9.65E-01 ± 7.58E-01 

 
15 5.53E-03 ± 6.19E-03 2.85E-72 ± 5.41E-72 4.92E+00 ± 5.81E-01 7.44E+01 ± 5.66E+00 2.62E-01 ±  1.61E-01 

 
20 9.65E-03 ± 7.28E-03 2.17E-98 ± 4.20E-98 3.57E+00 ± 4.58E-01 6.79E+01 ± 4.84E+00 6.51E-02 ± 2.17E-02 

CLPSO 10 5.12E+00 ± 3.23E+00 2.96E+02 ± 1.78E+02 6.45E+00 ± 1.42E+00 1.74E+01 ± 4.60E+00 7.27E-01 ± 1.28E+00 

 
15 2.22E+00 ± 1.04E+00 9.79E+01 ± 6.98E+01 3.30E+00 ± 1.37E+00 7.26E+00 ± 2.85E+00 1.62E-02 ± 3.07E-02 

 
20 1.88E+00 ± 3.26E-01 4.43E+01 ± 1.33E+01 1.91E+00 ± 4.33E-01 3.68E+00 ± 2.10E+00 5.64E-03 ± 1.40E-02 

CPSO-S6 10 1.41E+00 ± 4.73E-01 4.63E-07 ± 6.14E-07 1.12E-06 ± 4.01E-07 0.00E+00 ± 0.00E+00 7.29E-02 ± 1.49E-02 

 
15 2.47E+00 ± 7.00E-01 1.36E-05 ± 1.76E-05 1.11E-05 ± 4.53E-06 0.00E+00 ± 0.00E+00 6.90E-02 ± 1.56E-02 

 
20 1.59E+00 ± 5.01E-01 1.20E-04 ± 8.99E-05 5.42E-05 ± 1.66E-05 0.00E+00 ± 0.00E+00 8.95E-02 ± 1.68E-02 

CPSO-H6 10 1.94E-01 ± 2.63E-01 2.63E-66 ± 5.08E-66 9.42E-11 ± 7.58E-11 0.00E+00 ± 0.00E+00 6.75E-02 ± 1.40E-02 

 
15 2.59E-01 ± 2.47E-01 9.00E-46 ± 1.09E-45 9.57E-12 ± 7.96E-12 0.00E+00 ± 0.00E+00 5.54E-02 ± 1.27E-02 

 
20 4.21E-01 ± 3.21E-01 1.40E-29 ± 1.15E-29 2.73E-12 ± 2.03E-12 0.00E+00 ± 0.00E+00 5.24E-02 ± 1.19E-02 

CPSOLRP 10 3.76E-23 ± 8.43E-23 5.09E-229 ± 0.00E+00 5.42E-14 ± 1.23E-14 0.00E+00 ± 0.00E+00 3.33E-02 ± 3.83E-02 

 
15 1.33E-26 ± 4.78E-27 3.07E-302 ± 0.00E+00 4.99E-14 ± 7.64E-15 0.00E+00 ± 0.00E+00 2.38E-02 ± 3.07E-02 

 
20 1.14E-26 ± 3.20E-27 3.32e-321 ± 0.00E+00 5.28E-14 ± 1.06E-14 0.00E+00 ± 0.00E+00 4.10E-02 ± 3.95E-02 
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5.2 Experiment 1: Function Optimization 

Table IV shows the mean and standard deviation of 10 

runs of each PSO on 30 dimensional problems. In 

unimodal functions cooperative PSOs could reach good 

results. The function f0 is a simple unimodal function and 

its global optima places in the center of function. Also, 

function f1 is a unimodal function with one global 

optimum. Standard PSO performs better in f1 when 

comparing with CPSO family and CLPSO. This implies 

that the CPSO is less effective in solving simple problems. 

In the other hand, due to adaptive switching mechanism 

of CPOSLA, the algorithm could use the PSO’s 

dimension-wise updating rule while using several swarms 

to optimize different dimensions of search space 

independently. By combining the results of these two 

properties, CPSOLA achieves the best results on 

unimodal functions (f0 and f1). 

In Table IV, functions f2-f4 are multimodal functions. 

In f2 and f3 CPSOLA and CPSO generally outperform 

standard PSO, CLPSO that involves neither cooperative 

swarms nor information exchange property. However, the 

CPSOLA is most powerful and robust for these two test 

problems. These results confirm the hypothesis that 

cooperative swarms speed up the convergence of 

CPSOLA algorithm and adaptive switching mechanism 

helps the swarms jump out of the local optima and find 

better solutions. 

Different dimensions of CLPSO may learn from 

different exemplars. Due to this, the CLPSO explores a 

larger search space than the other PSOs in function f4. 

The larger search space is not achieved randomly. 

Instead, it is based on the historical search experience. 

Because of this, the CLPSO performs comparably to or 

better than other PSO variants on function f4. Note that 

function f4 is known to become easier as the number of 

dimensions increases. 

The experiments which are conducted on 30–D 

problems are repeated with 10, 15 and 20 particles. In 

Table IV, the S entry indicates the population size. The 

results show, increasing the number of particles and 

keeping the problem's dimension fixed, will lead to 

improve the fitness value of PSOs. Although from the 

results of Table IV the resulting performance may vary 

depending on the problem being optimized. There seems 

to be no definitive value for the swarm size that is 

optimal across all problems, so to avoid tuning the 

algorithm to each specific problem, a compromise must 

be reached. 15 particles were shown the best results for 

CPSOLA, as populations of this size performed best by 

a very slight margin when averaged across the entire 

range of test problems. 

5.3 Experiment 2: Convergence graph 

Fig. 9 presents the convergence characteristics in 

terms of the mean best fitness value of each algorithm for 

all 30 – dimensional test function with 20 particles. The 

comparisons in both Table IV and Fig. 9 show that, when 

solving unimodal and multimodal problems, the CPSOLA 

offers the best performance on most test functions. In 

particular, the CPSOLA offers the highest accuracy on 

functions f0, f1, f2 and f3. Furthermore, CLPSO shows the 

best convergence characteristics on function f4. 

 

 

(a) 

 
Fig. 9. The mean convergence graph of 30-D benchmark functions. (a) f0 (Rosenbrock). 
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(b) 

 

(c) 

 

(d) 

 

Fig. 9. (Continued.) The mean convergence graph of 30-D benchmark functions. (b) f1 (Quadric). (c) f2 (Ackley). (d) f3 (Rastrigin). 
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(e) 

 

Fig. 9.  (Continued.) The mean convergence graph of 30-D benchmark functions (e) f4 (Griewank) 

 

The Rosenbrock function (f0) is a non-convex test 

problem with a long, narrow and parabolic shaped flat 

valley. From the set of flat lines of Fig. 9 – a (f0), CLPSO 

and CPSO are easily get trapped in local minima while 

standard PSO still improves its fitness value. Moreover, 

CPSOLA could escape from the local minima till the 

middle generations and acquire the best fitness value. 

CPSOLA can find the best trail into the valley and almost 

converges to the global minimum. 

The Quadric function (f1) is a convex and unimodal 

problem which has D local minima except for the global 

one. In Fig. 9 – b (f1) CPSOLA and CPSO-H6 converge 

better than other PSOs. Both of these cooperative 

heuristics utilize two populations in order to optimize the 

test problem. Since CPSOLA uses adaptive switching 

mechanism while CPSO-H6 uses interleave switching 

mechanism, the CPSOLA approach could exploit 

beneficial properties of PSO and CPSO-Sk algorithms. 

The Ackley function (f2) is a non-separable and 

multimodal function. It has a flat outer region and a large 

hole at the center. The function poses a risk for 

optimization heuristics, particularly hill climbing and 

gradient steepest descent algorithms. Fig. 9 – c (f2) shows 

the convergence characteristics of 30– dimensional 

Ackley' function with 20 particles. The first flat line in 

Fig. 9 – c indicates that the Standard PSO becomes 

trapped in a local minimum in early generations. Since 

CLPSO has a large feasible search space, it is easily 

trapped in a local minimum either; the second flat line 

shows that. From the third and fourth flat lines which 

belong to CPSO-S6 and CPSO-H6 algorithms, we can 

observe that they have a fast convergence speed and these 

results are due to the exhaustive dimension wise search 

method of cooperative approach. The adaptive switching 

mechanism of CPSOLA has a cost and the cost is the 

slow convergence of the algorithm in this problem. Since 

using the alternative population may suppress improving 

the global best particle of primary population for a while, 

CPSOLA is managed to continue improving its 

performance very well. The best result belongs to 

CPSOLRP, which its learning algorithm can find the 

optimal policy faster than the others. Also definitive 

decision making property of LRP learning algorithm 

helps CPSOLRP algorithm to escape form the local 

minima before it becomes too late. 

The Rastrigin function (f3) is a non-convex, non-linear 

and multimodal optimization problem that has large 

number of local minima whose values increases with the 

distance to the global minimum. Finding the minimum of 

Ackley function is fairly difficult problem due to 

Ackley’s large search space and its large number of local 

minima. From Fig. 9 – d (f3), PSO and CLPSO are get 

trapped in local minima in early generations but all 

cooperative PSOs converge to global optimum. Also the 

CPSOLA algorithm can converge faster than CPSO-S6. 

The Griewank function (f4) is a multimodal and non-

separable test function. The algorithms which try to 

optimize each variable of this benchmark function 

independently, lead to failure. The global optimum of this 

function is regularly distributed. From the results 

presented in Fig. 10 – e (f4), it can be observed that all 

PSO variants failed on Griewank function except for 

CLPSO. The algorithm utilizes a tournament selection 

heuristic for determining the exemplar in each dimension.  

Figures 9 – a to e show the plot performance of the 

PSO, CLPSO, CPSO-S6, CPSO-H6 and CPSOLRP 

algorithms in 30-dimensional problems. The CPSOLA 

algorithm uses a bi-action learning automaton with the LR-

P learning algorithm. 
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Table V: Robustness Analysis. The second column S lists the number of particles per swarm. The column Succeeded list the number of runs (out of 10) 

that manage to attain a function value below the threshold in less than 20000 fitness evaluations, while the column FEs presents the number of function 
evaluations needed on average to reach the threshold, calculated only for runs that Succeeded 

Function 

Algorithm 
S 

f0 (Rosenbrock) f1 (Quadric) f2 (Ackley) f3 (Rastrigin) f4 (Griewank) 

Succeeded FEs. Succeeded FEs. Succeeded FEs. Succeeded FEs. Succeeded FEs. 

PSO 10 10 55 1 1325 1 24 5 100 1 85 

 
15 10 53 10 4209 4 77 8 128 4 409 

 
20 10 48 10 2779 5 96 9 182 5 262 

CLPSO 10 0 N/A 0 N/A 0 N/A 0 N/A 0 N/A 

 
15 0 N/A 0 N/A 0 N/A 0 N/A 7 5240 

 
20 0 N/A 0 N/A 0 N/A 1 238 8 3391 

CPSO-S6 10 10 1377 10 555 10 145 10 303 4 319 

 
15 10 1306 10 450 10 118 10 253 2 138 

 
20 10 1185 10 398 10 102 10 211 2 116 

CPSO-H6 10 10 1067 10 248 10 61 10 103 2 40 

 
15 10 1043 10 214 10 56 10 99 2 45 

 
20 10 992 10 201 10 49 10 101 2 49 

CPSOLRP 10 10 1149 10 306 10 77 10 143 1 33 

 
15 10 1145 10 266 10 70 10 144 2 63 

 
20 10 1075 10 258 10 65 10 137 3 116 

 

5.4 Experiment 3: Robustness Analysis 

This section compares the various PSOs to determine 

their relative rankings using both robustness and 

convergence speed as criteria. The term robustness is used 

here to mean that the algorithm succeeded in reducing the 

function value below a specified threshold using fewer 

than the maximum allocated number of function 

evaluations. A robust algorithm is one that can decrease 

the fitness value below a specified threshold in a fewer 

number of fitness evaluations during all runs [3]. 

Table V shows the robustness analysis for all test 

functions. In function f0 none of the algorithms, with the 

exception of CLPSO, have any difficulty reaching the 

threshold during any of the runs.  Table V further shows 

that all the algorithm solved this problem in fewer than 

2000 function evaluations, with the PSO algorithm 

requiring the fewest function evaluations overall. 

The CLPSO algorithm again consistently fails to reach 

the threshold value of function f1 on all runs. Furthermore, 

standard PSO with 10 particles per population is not a 

robust algorithm, whereas all cooperative algorithms 

reach the threshold during all runs.  

The standard PSO and CLPSO have some difficulty 

with f2 function, as can be seen in Table V. The function 

f2 represents a very important result regarding the nature 

of cooperative algorithms: the CPSOLA algorithm may 

have somewhat slower rates of convergence compared 

with CPSO-S6 and CPSO-H6 algorithms, but it is 

significantly as robust as them in many cases. The 

function f3 shows similar results to function f2. The 

cooperative algorithms again perform admirably on the 

Rastrigin function, but the PSO and CLSPO algorithms 

are less robust in this test function. 

The function f4 shows interesting results. It proves to 

be hard to solve for all the algorithms, as can be seen in 

Table V. None of cooperative algorithms and standard 

PSO can perfectly optimize it, while CLPSO’s novel 

learning strategy enables it to act more robust when 

compared to other PSO variants. Also, no algorithm could 

achieve a perfect score on this test function. 

When looking at the number of function evaluations, 

the CPSO-H6 algorithm was usually the fastest, followed 

by the CPSOLA and the CPSO-S6. These results indicate 

that there is a tradeoff between the convergence speed and 

the robustness of the algorithm. 

In 4 out of 5 test functions, if the number of fitness 

evaluations reaches more than 5000 FEs, the algorithm 

will not meet the robustness condition, while in function 

f4 this observation rejects and CLPSO still satisfy the 

robustness criteria. 

5.5 Experiments Analysis 

From Table IV, the CPSOLA performs better in 4 out 

of 5 benchmark functions, where swarm size were 15. 

This swarm size indicates that the algorithm does not 

need big population in order to gain better results 

compared with other PSO variants. Also the CPSOLA 

performs better while optimizing both unimodal and 

multimodal optimization benchmarks. Based on Table IV 

results the algorithm performs better while optimizing 

complex multimodal optimization benchmarks such as 

Ackley and Rastrigin. More over from Table V, the 

proposed algorithm is robust while optimizing complex 

multimodal functions where there optimization problems 

have complicated structures. 

From the point of complexity analysis, the time 

complexity standard PSO [2] is O (g * p * d) where n is 

the number of generations, m is the number of designated 

particles and d is the number of dimensions. Totally, we 

assert that the time complexity of PSO is O(n
3
). 
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 In this context by considering the Fig. 7, as long as we 

may have two choices in each generation the time complexity 

of CPSOLA will be calculated through the following: 

( )* ( ) ( )
( )*

( )* ( )

d

d

O s O s O p
O g

O s O s



  

(7) 

Where is (7), s is the number of swarms (s<<p) and sd 

is the number of member dimensions of s
th

 swarm 

(sd<<d). In order to calculate the time complexity of 

CPSOLA, we consider the maximum of the two terms 

which is mentioned in (7), thus we have: O (g * S * Sd + 

g * p). Totally we assert that the time of complexity of 

CPSOLA is O(n
3/S4

+n
2
). As long as in each generation of 

CPSOLA algorithm the sub regions of optimization space 

is optimized through by swarms, the O(n
3
) value of PSO 

is divided by this sub swarms. So, in the worst case that 

the number of swarms is set to the whole population, the 

time complexity will be O(n
3
+n

2
); where this value is 

worse than the time complexity of standard PSO. But also 

in the moderate case or best case where the solution space 

is divided into sd swarms where    
 

  

  
→  

   the 

algorithm may performs faster than standard PSO with 

time complexity of O (n + n
2
). 

 

 

 

 

 

 

 

 

6. Conclusions 

In this paper we presented a cooperative particle 

swarm optimizer with adaptive control on the outer layer 

of cooperation named as CPSOLA. The results are shown 

a significant improvement in performance and robustness. 

Like CPSO-HK algorithm in CPSOLA we have two 

populations: The first one named as primary population 

and belongs to CPSO, while the secondary one belongs to 

PSO algorithm. In the proposed approach a learning 

automaton observe the global best fitness of primary 

population and decide when to cooperate with secondary 

one. Having a comprehensive scheme of problem to be 

optimized, the learning automaton controls the evolution 

process. Since the evolution of secondary population may 

lag from the first one, the automaton brings an indirect 

diversity while switching between its actions. In the real 

world every action has a consequence; slow convergence 

is the cost that we paid for our algorithm.  

To evaluate the performance of CPSOLA, three different 

kinds of experiments are conducted in this paper. The 

experiments are carried out on five algorithms on the five 

chosen test problems belonging to two classes. The 

CPSOLA utilizes the LRP learning technique as its learning 

algorithm. The CPSOLA performs the best in unimodal test 

functions and two out of three multimodal test functions. 

Totally the CPSOLA is shown the best performance in four 

out of five test functions. Also, it is significantly a robust 

algorithm with small standard deviation. 
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