
* Corresponding Author

Fusion of Learning Automata to Optimize
Multi-constraint Problem

Sara Motamed*

Department of Computer Engineering, Fuman Branch, Islamic Azad University, Fuman, Iran
Samotamed@yahoo.com

Ali Ahmadi
Department of Computer Engineering, K.N. Toosi University of Technology, Tehran, Iran

ahmadi@eetd.kntu.ac.ir

Received: 23/Sep/2013 Revised: 11/Oct/2014 Accepted: 12/Nov/2014

Abstract
This paper aims to introduce an effective classification method of learning for partitioning the data in statistical spaces.
The work is based on using multi-constraint partitioning on the stochastic learning automata. Stochastic learning automata
with fixed or variable structures are a reinforcement learning method. Having no information about optimized operation,
such models try to find an answer to a problem. Converging speed in such algorithms in solving different problems and
their route to the answer is so that they produce a proper condition if the answer is obtained. However, despite all tricks to
prevent the algorithm involvement with local optimal, the algorithms do not perform well for problems with a lot of
spread local optimal points and give no good answer. In this paper, the fusion of stochastic learning automata algorithms
has been used to solve given problems and provide a centralized control mechanism. Looking at the results, is found that
the recommended algorithm for partitioning constraints and finding optimization problems are suitable in terms of time
and speed, and given a large number of samples, yield a learning rate of 97.92%. In addition, the test results clearly
indicate increased accuracy and significant efficiency of recommended systems compared with single model systems
based on different methods of learning automata.

Keywords: Stochastic Automata with Fixed and Variable Structures; Discrete Generalized Pursuit Automata; Fusion
Method; Parallel Processing.

1. Introduction

Learning automata is one of the important models of
learning and the goal of this method is to determine the
optimal actions in unpredictable situation. The most
important application of learning automata is to estimate
parameters [3] while it is used in identification of pattern
and play theory [4, 5, 6, 7]. All researches up to late 1980
have been reviewed and discussed at this book (Narendra
and Thathachar) [1, 10]. Numerous examples and
applications of learning automata have been presented in
[9]. Another important feature of learner systems is their
potential to improve efficiency with time. According to
[2], the objective of the learner system is to improve a
function which is not totally identified. Therefore, an
approach to the problem is to decrease the objectives of
the learner system which is defined on a set of parameters
which aim at finding the optimum parameters set;
reinforcement learning is a common method in finding
the optimum objective. Main benefit of reinforcement
learning compared with other learner methods are that it
requires no information from the environment (than
reinforcing signal) [1]. Stochastic learning automata are
one of the reinforcement learning models which try to
increase their efficiency and are divided into fixed
structure stochastic automata (FSSA) and variable

structure stochastic automata (VSSA) [8]. Alonso and
Mondragon introduced a framework of limitations
according to Markov decision making and optimization
methods [16]. Similarly [17], reinforcement learning
algorithms have been used for multi-factor systems and
elements. In the later section, the paper presents an
optimum method by the use of a learning method by
using constraints based on Markov hypothesis. The
reinforcement learning is defined in an environment using
Markov model, by multi-objective functions and long
term rewarding [18]. To prove their claim they applied
this method to statistical plays with reward average
limitations and obtained significant results. Also they
explained the limited reinforcement learning method by
stochastic and true rewards with a new view for
optimization problems. The objective of this paper is to
analyze the object by parallel computations and learning
automata by heuristic algorithms. Cardei considered a
special algorithm of learning automata which is called
pursuit algorithm [7]. This algorithm pursues the current
optimal action and if this action is not the one with the
minimum penalty probability, this algorithm pursues a
wrong action. This algorithm presents with two models of
continuous and discrete. The continuous pursuit algorithm
that used a reward and penalty learning paradigm,
denoted CPRP. Later [19] introduced the first discretized
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Pursuit estimator algorithm by presenting a discretized
version, denoted DPRI that uses a Reward-Inaction
learning paradigm. The discretized generalized pursuit
algorithm (DGPA) is another algorithm that generalizes
the concepts of the Pursuit algorithm. In this algorithm all
the actions have higher estimates than the current chosen
action. This paper is used this DGPA to predict the best
actions in unstable situations. In section 2, an effective
model of partitioning is introduced by multi-constrained
problems and also in sections 3 reviews the stochastic
learning automata method. In the next parts of this
section, fixed and variable structures and discrete
generalized pursuit automata (DGPA) are considered. The
fusion of DGPA is defined in section 4, to remove the
problem of convergence in a very big space as a
recommended method. Experimental results and
conclusion are given in sections 5 and 6.

2. Partitioning by Multi-constraint

The main goal of this algorithm is to allocate a set of
elements to elected classes and similar groups which are
hopefully placed in the same class. This paper introduced
an optimal model of classification in special situations.
Also this paper is explained the proper model of
partitioning to solve the multi constraint problems. Object
allocation is a problem of partitioning a set of P with |P|
elements in N classes. These elements have a certain
capacity of limitations in each class [12]. This means that
each class has limited capacity considering constraints for
connecting joints. In the problem, it is supposed the
relationship between P elements is weighted in a certain
way and there is no connection of the object with itself.
The aim in placing the processes on nodes is to find the
shortest completion time in parallel applications. It is
obvious that if (|P|≤|N|), each node would host in more
than one process. Partitioning the process set would be
possible where (|P|>|N|) and is grown in a combinatory
manner and computations of processes connection are
defined by Narendra and Thathachar [12]. To express
limitations and relations this part should apply
conventions for external and internal relations. Xi,n is a
typical alternative of Xi,n ∈ {0,1} and its Pi process is
allocated to Nn node so the quantity is one, otherwise it is
zero. It assumed that the external relation is formed from
a node with the supposition that Pi has been allocated to
this certain node [12]. Then ∑ 1 − X , w ,| | the
external connection of Pi processes with all other
processes of Pj would be formed. If each Pj is allocated to
Nn node, then X , = 1 and this process has no
participation with the above sum. To find the external
relation of the node, the sum of similarities should be
added and then multiplied and rearranged. In the external
relation limit calculated by Eq. 1 [12]:

| | | |

, , , ,
1 1

( ) 1 1,...,| |
P P

i n j n j n i j
i j

X X X W n N
 

   (1)

The above equation shows the set of processes and
their connections from a subset to another. The only
guiding quantity is a wi,j relation which indicates the Pi

process on the node to Pj distant process which is not on
the node. Therefore, the internal connection may be
obtained by a similar formula, but by adding the
connection for going from the distant process to the
process on w , , the result changes to Eq. 2 [12]:
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Set of constraints 3 limits total computation time for
the processes allocated to each node with the node
normalized capacity. Set of constraints 4 assures that a
process only be allocated to a single node [12].
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Along a cycle, automaton picks a behavior and
according to performance receives a response from the
environment. The response may be a penalty or award [10].
Automaton obtains this response and knowledge form
former behaviors and so selects its next move. The goal of
the learning automaton is an optimum measure beyond the
set of permitted behaviors. Automaton adjusts itself with
the environment through learning optimum operation
selection. Modeled learning sample is found in systems
with insufficient knowledge about the environment and
their startup by learning automaton applications. In FSSA,
there is the property that output and transfer functions are
not changing with time. The problem is based on the fact
that static map of a subclass is obtained from learning
automaton solutions and is used for solving object
partitioning problems. For pairing and computation of wi

external connection for all processes, the node is selected
with most violation from constraint 3. For instance PA,

which has been randomly selected among the processes on
the node according to experimental distribution form their
τ average weights, is allocated to this node. Then PA

process randomly selects another PB process according to
WA distribution probability. A set of 〈P , P 〉 processes are
considered as a pair where pairing is said to be successful.
If two processes belong to the same node, then these two
processes receive a reward, unless the pairs are
unsuccessful and are both penalized [12].

3. Stochastic Learning Automata
Learning automata are one of the important models of

learning on unknown random environment. Each
automaton has a finite set of input and certain probability
of reward or penalty from environment. So the most
important application of learning automata is to estimate
parameters, while it is used in classification subjects, play
theory and identification of pattern [10]. Learning
automata are classified into the two groups of fixed and
variable structure learning automata. In stochastic
automata one action is selected randomly. Then the
response of environment to this action is calculated by
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probabilities. Now the new action is selected again and
according to updated action probabilities, and the
processors is repeated.
A stochastic automaton is defined by the sextuple {x, φ,
α, p, A, G} and each parameter is:
- X is a input set.
- {φ 1, φ 2,…, φ r} is a finite set of internal state.
- {α 1, α 2,…, α r} is a finite set of  output or response set.
- p = {p1, p2,…, pr} represents the action probability set.
- A is an algorithm which generates p (n + 1) from p (n).
-G is the output function.
For execution of training, the feedback signal from the
environment, which triggers the updating of the action
probabilities by the automaton, can be given by
specifying an appropriate “error” function.

3-1- Fixed structure stochastic automata (FSSA)
Along a cycle, automata would pick a behavior and

according to performance receives a response from the
environment in a manner that the response may be a
penalty or reward [10]. Automata obtain this response and
knowledge from former behavior for expression of the
next measure. The goal of the learning automaton is an
optimum measure beyond the set of permitted behaviors.
Automaton adjusts itself with the environment through
learning optimum operation selection. Modeled learning
sample by learning automaton applications is found in
systems with insufficient knowledge about the
environment and startup. In FSSA there is the property
that output and transfer functions would change with
time. The problem is that stable mapping a subclass of the
learning automaton solutions and is used for solving the
object partitioning problems. For pairing and calculation
of external connection of wi for all processes, first a node
with most violation from region 3 is selected. A process
allocated to this node, for instance PA which has randomly
selected among the processes on the node according to
experimental distribution form their average weights.
Then PA process would randomly select another PB

process according to the possibility of WA distribution.
Set of 〈 , 〉 process is considered as a pair and called
successful pairing. If the two processes belong the same
node then these two processes would receive a reward
unless the pairs are unsuccessful and both penalized [12].

3-2- Variable structure stochastic automata (VSSA)
VSSA is a replacement for FSSA and its transfer and

output matrixes are changed in time [10, 13, 14 and 15].
They are defined as a possible operation vector P(K) whereP (K) is the possibility of ith operation in the set of A
operation, which is selected in K time from  available|A| operations. As ∑ P (K) = 1, for all Ks, updating the
law for possibility vector would be continuous or
discontinuous. The quickest learning automaton
convergence belongs to the VSSA family. Adaptability of
the family with automata to solve the specific problems
may hopefully improve the speed of obtaining a solution.
Thathachar and Sastry [16] introduced what is known as

estimating algorithms. The main feature of these algorithms
is that they maintain estimates of possible rewards for each
operation and use them in possibility updating equations. In
the first stage of functional, automaton selects an operation
and the environment produces a response to this operation.
According to the estimating algorithm answer, estimation
of possible rewards for that operation is updated. Changes
in possibility vector is P(K) operation based on d(k) and
the vector being executed is estimated from the rewards
possibility which is updated according to feedback from the
environment. A model of random automata learning is
DGPA, referred to in section 3-3.

3-3- Discrete generalized pursuit automata (DGPA)
Pursuit algorithm is a special type of estimator algorithm

and it converged in statistic space rapidly. This model of
pursuit algorithm works based on reward inaction learning
paradigm and it updates the action of probability vectors if
the environment rewards the chosen action. One of the
problems in standard learning algorithms is their relatively
slow convergence in selection of optimum operation in static
environments for the removal of which various solutions
have been introduced. One of the first solutions is
disconnection of possibility space [10] in which possibility
of operation selection can pick only certain quantities in the
range of [0, 1]. On this basis, most standard algorithms are
discrete. One of the existing problems in new models is
premature convergence of learning algorithms with non-
optimized operations. The root of these problems is in
limiting their probability space. Thatachar and Sastry opened
a new rout in their research by introducing estimator
algorithms in line with their endeavors to improve learning
algorithms convergence. The most important feature of such
algorithms is in maintaining a continuous estimation from
the possibility of receiving the reward for each operation and
using it in updating automata equations. In other words, in
the first stage of operation cycle, automaton selects an
operation and then environment produces a response for it.
According to this response, the estimating algorithm updates
the reward possibility estimation for that operation. Pursuit
automata are a group of estimating algorithms. As it is clear
from its name, such algorithms are identified based on the
fact that operation possibility vector encourages the
operation which is currently considered as the best operation
according to estimations. This is made with increasing the
possibility of an operation wherein the reward possibility
estimation is highest than other operations. Pursuit automata
are divided in two continuous and discrete classes [11, 12].
The difference between these two algorithms is in updating
the law for operation possibilities. According to the results,
partitioning on the basis of pursuit automata with variable
structure is effective for only small classes [10]. Therefore,
the above problems cannot possibly be used as an ideal
method for solving such problems. Our goal in this paper
was to solve these problems by using the fusion of DGPAs.
This model is called fusion of DGPAs (FDGPA) and is
defined in section 4 to solve multi-constraint problems.
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4. Fusion of DGPA (FDGPA)

An important problem in automata learning is their
learning rate or their convergence speed equivalence. This
is highly important for learning as it mostly changes slowly
in the environment and learning processes should be
completed in the environment before main changes appear,
unless learning is ineffective. One idea is to use parallel
operations because this method is considered as increased
convergence speed.  But if we have parallel learning
automaton operations, each automaton would produce its
operation and according to the signal, the environment
would produce reinforcement in time. As there are multi
responses, convergence speed would be raised. FDGPA is
considered to be parallel instead of single learning
automaton. Fig. 1 indicates our recommended algorithm. In
Fig. 1, partitioning algorithm is applied to the input data for
allocation of |P| elements to |N| classes with the constraints
and it goes on to the next step. In that stage, data are
divided to n classes so that they are given to processors for
DGPAs which are applied to a parallel manner. As seen in
Fig. 1, n parameters are the total number of operations in
n={1,…,n} and P is the number of processors while in this
case, each processor is an automaton. In our parallel model
indexes are fixed and Current Primes are changing each
moment while input vectors are divided by each processor
in a certain number. Processors output is the automaton
input to which DGPA learning is applied and the output for
this step is the environment input while a cycle is repeated
for the permitted number. In fusion section the set of
operations is given by α and operation possibility vector
p(K) is common by all n automata.

For instance, each DGPA is based on the common
operation possibility vector which is selected from (αi

(k)). This vector obtains its own reinforcement signal
((βi (k)). Possibility vector for updated common
operation is obtained based on all selected operations
and obtained reinforcement learning. Fusion method
uses all information obtained by the possibility of

updating. The supposition is that βj (k) ∈ [0,1]  is
obtained for all i, k and the fusion vector is computed
by the below equations [11]. To calculate the total
response to αj in Eq. 5:

1

( ) ( ) { ( ) }
n

j j
i i

j

q k k I k  


  (5)

In Eq. 6 is calculated the response to obtain the sum
total:

1 1

( ) ( ) ( )
n n

j
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j j
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Output from fusion step is obtained from Eq.7:( + 1) = ( ) + ƛ ( ) − ( ) ( )= 1, … , (7)

Where єƛ (0, 1] is learning parameter and ƛ = ƛ is
its normalized value. According to computations in
eq.7, p(k) has been updated only once and does not
require to be updated in each learning. Updated
value p(k+1) is shared by all automata for selection
of the next operation. This algorithm is fit for n sizes
and for speeding up the rate of convergence.

5. Experimental Results

This paper studies the problem of partitioning a P set of| | elements (or objectives) in | | multiple discordant levels
with the objective of having similar cluster elements. In this
same level, objects can be connected in a multi-constraint
(possible or discordant) method. This method has been
formed by static mapping from allocation of a set of
processes in parallel application to the set of computing
nodes. In order to compare our fusion method with FSSA,
multi-constraint partitioning is run on processes. We first
presented a FSSA algorithm to solve multi-constraint
problems. Solution is applicable but requires some
centralized collaborations. A solution should be free from a
centralized control mechanism. For this reason VSSA was
presented. But this method is not ideal for such problems for
sets with scattered data and is not applicable for big sets.
There are two different models of pursuit learning algorithm
which are called discrete and continuous. The differences
between two models of pursuit algorithm are the updating
rules for the actions probabilities.

For this reason is used the DGPAs fusion method. The
software used for simulating the data is Matlab. Table 1
and 2 indicate learning rate of our recommended method
in 200 iterations. Results indicate that fusion of stochastic
learning automata algorithms give better results than
single method stochastic learning automata algorithms.
Plus by increasing the number of processors the rate of
learning has increased.

Table 1: The results of single FSSA and fused FSSAs.

Fusion of DGPAs
with three parallel

processors

Fusion of
DGPAs with
two  parallel
processors

Number of
processes

Number
of nodes

100
100

99.50

100
99.90
99.12

4
6
8

2

99.14
99.10
99.03

98.66
98.51
98.43

8
12
16

4

99.06
98.48
98.12

98.40
98.37
98.05

12
18
24

6

97.9297.036416

Fig.1. FDGPA model
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Table1 indicates learning rate in single FSSA and fusion
FSSAs and it can be understood that fusion of FSSAs
give better result than single FSSA.

Fig. 2 indicates learning rate in single FSSA and fusion
FSSAs. This figure indicates that fusion of FSSAs give
better result than single FSSA.

Table 2: The results of fused DGPAs with two and three parallel
processors.

Fusion of
FSSAs

FSSANumber of
processes

Number of
nodes

100
100
100

99.98
99.96
99.94

4
6
8

2

100
99.80
99.51

99.77
99.60
99.36

8
12
16

4

99.33
99.28
99.19

98.97
98.62
98.05

12
18
24

6

98.9997.176416

Fig. 3. Indicate the learning rate in fused algorithms of
DGPAs with two and three parallel processors. As
deduced, any more the number of processors, learning
rate would be higher.

Fig. 4, 5 and 6 indicate partitioning of P elements in N
class by applying proposed algorithm.

Fig.7. The results of fused and single model algorithms
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16 nodes and 64 processors

Fig.5. Partitioning the data with FDGPA for
6 nodes and 12 processors

Fig.4. Partitioning the data with FDGPA for
4 nodes and 8 processors

Fig.2. Comparison of single FSSA and fused FSSAs
results on different nodes and processes

Fig.3. Comparison of the results from fused DGPAs with different
processors
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This section presents a comparison of the performance
of the different model of learning automata for using the
partitioning the data by multi constraint rules. Looking at
Fig. 7, it found that the fused of automata’s algorithms
have a higher learning rate than single model automata’s
algorithm. Furthermore, by adding the number of
processors in FDGPA, our model’s performance rises.

6. Conclusion

Over the last two decades, many new families of learning
automata have emerged, with the class of estimator
algorithms being among the fastest ones.  All of those
algorithms are divided into the two main groups of variable
stochastic automata and fixed structure automata. One of the
big advantages of variable structure automata has been the
efficiency of this model in dynamic environment. So this
paper is used a special model of variable structure automata
is called DGPA algorithm. In contrast to the GPA algorithm,
the DGPA always increases the probability of all the actions
with higher estimates.

Then this paper is introduced a new model of variable
stochastic learning automata by name of FDGPA. This

model is used the fusion of DGPA to solve the
partitioning of multi-constraint problems.

Review of the results in table 1 and 2 indicate that
when there are 16 nodes and 64 processes fused learning
rate would be 98.99 in fixed structure automata while the
fused learning rate in stochastic learning automata with
variable structure would be 97.92% using three
processors with 200 iterations.

Overall, the proposed algorithm proved to be faster
than the other algorithms in environments with more than
two actions. When convergence speed is very low in
stochastic automata learning algorithms with fixed and
variable structures, and the number of samples increases,
stochastic automata learning algorithm with variable
structure would not be efficient.

Therefore, it can be claimed that the fused model
outperforms the single model. Also, the number of
processors increases in our parallel model as the learning
rate climes. This method can be used in structural
identification of pattern recognitions as a powerful
classifier in further studies.
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