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Abstract 
Counting mitotic figures present in tissue samples from a patient with cancer, plays a crucial role in assessing the 

patient’s survival chances. In clinical practice, mitotic cells are counted manually by pathologists in order to grade the 

proliferative activity of breast tumors. However, detecting mitoses under a microscope is a labourious, time-consuming 

task which can benefit from computer aided diagnosis. In this research we aim to detect mitotic cells present in breast 

cancer tissue, using only texture and pattern features. To classify cells into mitotic and non-mitotic classes, we use an 

AdaBoost classifier, an ensemble learning method which uses other (weak) classifiers to construct a strong classifier. 11 

different classifiers were used separately as base learners, and their classification performance was recorded. The 

proposed ensemble classifier is tested on the standard MITOS-ATYPIA-14 dataset, where a 6464  pixel window 

around each cells center was extracted to be used as training data. It was observed that an AdaBoost that used Logistic 

Regression as its base learner achieved a F1 Score of 0.85 using only texture features as input which shows a significant 

performance improvement over status quo. It is also observed that "Decision Trees" provides the best recall among base 

classifiers and "Random Forest" has the best Precision. 

Keywords Breast cancer grading; Mitosis detection; Computer Aided Diagnosis; Texture Features; Ensemble learning; 

Pathology. 

 

1. Introduction 

Detecting dividing (ie. mitotic) cells is a challenging 

problem in the field of digital pathology. Mitotic cells are 

defined as cells that have basophilic cytoplasm and hairy 

extensions, while having no visible nucleus membrane. In 

clinical practice, mitotic cells are counted manually by 

pathologists in order to grade the proliferative activity of 

breast tumors[1]. However, this task is laborious, 

subjective and time-consuming. Using computer-based 

methods for recognizing and counting mitoses can reduce 

error rates and inter-observer variation. The challenging 

problem in classifing cells into mitotic and non-mitotic 

classes is that mitosis is a complex biological process in 

witch the cell undergoes various morphological 

transformations, apearing in a large variety of shape 

configurations[2]. Variation in appearances may also be 

caused by other factors like aberrant chromosomal 

makeup of tumors and imperfections of the tissue 

preparation process[3]. Figure 1 shows a mitotic cell and 

some non-mitotic cells as an example. 

The World Health Oraganization has recommended 

the Nottingham Grading System for grading breast cancer 

(i.e malignant, benign or non-cancerous). This system 

relies on three factors to grade cancer stages: tubule 

formation, nuclear atypia and the number of mitotic cells 

present in the tissue, the latter being of significant 

importance. A simple way to detect or even grade breast 

cancer is by counting mitotic cells present in a pre-

defined area of tissue samples; if the count of mitotic cells 

is greater than a specific number, it is possible that the 

tissue is cancerous . In this research we aim to detect 

mitotic cells present in breast tissue using their texture 

features. When classifiying cells into mitotic and non-

mitotic cells it is important to select features that are 

available in mitotic cells throughout the mitotic 

transformation process. Our results show that, being a 

rotation-invariant feature, histogram and texture features 

are appropriate for classifying cells using a supervised 

learning method. 

We use Adaptive Boosting[4] for classification of 

mitotic cells. Adaptive Boosting, also known as 

AdaBoost, is an algorithm for constructing a "strong" 

classifier as a linear combination of "weak" classifiers. 

Weak classifiers can be thought of as features that are 

weakly related to classes. AdaBoost tries to create a 

highly accurate prediction rule by combining many rules 

that are relatively weak or inaccurate. 

There are many types of immunohistochemistry stains 

used forstaining tissues. Our proposed method only works 
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on biopsy images stained with H&E
1
. The input images 

should have a dimension of            pixels. 

Currently our mitosis detection method is limited to 

detecting mitotic cells in 3-channel RGB color images. 

This paper also tries to address the problem of 

classifying highly-imbalanced data of mitotic and non 

mitotic cells using adaboost. Various weak learners can 

be used as base estimators in an AdaBoost classifier. We 

show that it is possible to classify highly imbalanced data 

of mitotic cells using AdaBoost with Logistic Regression 

as base estimator. The literature on mitosis detection in 

biopsy images is briefly reviewed in Section II. In Section 

III, the selected features used for classification are briefly 

discussed. In section IV, our results are presented. Our 

AdaBoost classifer achieves an F1 measure of 0.85, 

showing improvement over competing methods. Our 

results are compared with other detection methods in the 

last section. 

2. Related Work 

In histography of breast cancer, a paraffinized section 

of breast tissue is scanned under a microscope to detect 

the dividing cells. Mitoses are dark cells that have no 

visible nuclear membrane, and usually appear to have 

hairy extensions. To detect and count these cells, there are 

two main approaches. The first approach is to to detect 

mitotic cells straightly from the tissue image, usually 

using neural networks[5-8]. The second approach is 

segment all the cells that are found in the tissue image, 

                                                           
1
 Hematoxylin and Eosin, fluorescent acidic compounds widely used 

for staining tissues 

and then classify these cells into mitotic and non-mitotic 

classes[3,9-13]. 

The first approach is somewhat straight-forward: pixel 

values are fed into the neural network; the neural network 

decides if the image belongs to a mitotic cell or not. 

Neural networks has been used in a number of studies as a 

means for achieving high detection performance. For 

example in [6], the authors used Deep Neural Networks to 

detect mitotic cells in a single step from the input image. 

Their performance on the standard AMIDA13 dataset was 

an F1 score of 0.61, the highest score in the 2013 contest 

of mitosis detection. Similarly, in [5], Wang et al. used a 

cascade of handcrafted features alongside convolutional 

neural network features in order to detect mitotic cells 

faster than the previously mentioned research. The 

reported training time for this method was 4 days, with 

yielded an F1 score of 0.734 on a dataset of 35 images. 

Both of these methods, however, suffer from high 

computational overhead and very long training/detection 

times. 

The second approach requires several steps to be 

performed on the input image beore classifying cells, 

starting with separating cells from the background tissue, 

or cell segmentation. Before segmenting cells, it is 

common practice to pre-process the input images. 

Improper lighting and non-standard staining usually 

results in blurred images containing artifacts[2]. Gaussian 

filter has been used for reducing noise[14] and 

minimizing the effect of variations in tissue staining[15]. 

ROI
2
 selection is sometimes performed on input images 

to remove unnecessary processing on input data[16]. 

Histogram equalization has been used to normalize color 

distribution to that of a chosen image[17]. Intensity 

stretching after converting color images to grayscale was 

done in [18]. 

The method proposed in [8] employs a morphological 

double threshold operation to segment candidate cells. It 

then uses rotation-invariant features such as color, binary 

shape-based, Laplacian and morphological features. For 

classification, the authors used a cascade ensemble of 

AdaBoost classifiers and a single AdaBoost classifier. 

Results favor cascaded ensemble of AdaBoost classifiers 

with F1 measure of 58% vs 39% for single AdaBoost 

classifier. Also, the authors concluded that a granular 

structure may be a strong evidence for mitosis 

appearance. In [3], the authors extracted histogram 

features from cells and used random forests with 

weighted voting to classify the candidates and reported an 

F1-score of 0.72. To minimize over-segmentation, the 

authors developed a method that maximizes gray-level 

scale-space, blurring images while conserving edges. 

Histogram and intensity features were selected as 

rotation-invariant features which are necessary for the 

problem of mitosis detection. Weighted voting 

discourages trees with poor classification performance 

during training.  

 

                                                           
2 Region of Interest 

(a) Mitotic cell 

(b) Non-Mitotic cell 
Fig. 1 Examples of mitotic and non-mitotic cells. In Fig. 1(a) the 
mitotic cell is located in the center of the image, surrounded by non-
mitotic cells. 
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Fig 2. Our proposed method for classifying cells into mitotic and non-mitotic classes 

 

Support Vector Machines has been used in order to 

detect mitotic cells based on objective and pixel-wise 

textural features in [12]. Regions of interest were selected 

using maximum likelihood classification and object-wise 

local binary pattern features were extracted from the input 

cells afterwards. The input cells were segmented using 

morphological operations. The result was a F1 score of 

0.71. In another research, SVM was used to classify 

mitotic cells using a set of 1050 features extracted from 

grayscale input images[18]. 

Steps of our proposed method performed on a sample 

tissue image. The original image is shown in figure (a). In 

figure (b), pre-processing is performed on previous 

image. Following this, the blue-ratio image is calculated 

from the previous step; the image is blurred, then a 

morphological openning action is performed on the 

image, removing smaller blobs (figure (c)). The center 

point of each blob is then taken as the seed point (figure 

(d)), and a 6464  window over each center point is 

extracted, which is shown in figure (e). The extracted 

cells are then fed to the classifier, classifying each cell as 

mitotic or non-mitotic, shown in figure (f).  

Methods that rely on separating cells before training 

their classifier usually suffer from failures in their 

segmentation step. As performing morphological 

operations on histology images to separate cells often 

results in false cell boundaries and cells that are not 

segmented correctly, features extracted from them are not 

reliable. Thus, we do not segment cells from the 

background tissue. When segmenting cells, we select a 

6464  pixels window centering the cell, which holds the 

cell and the background image intact. Moreover, our 

AdaBoost classfier which uses Logistic Regression as its 

base estimator, does not need to assign weights to input 

data, to compensate for class imbalance between mitotic 

and non-mitotic cells. In the next section our proposed 

method is presented. 

3. Methods 

In this study, we use a fully-texture-based strategy for 

detecting mitoses in breast histopathology images stained 

with H&E, aiming to improve Precision and Recall of 

mitosis detection at the same time. Our emphasis is on 

extracting texture features as rotation-invariant features, 

while using a simple form of AdaBoost classifier that can 

classify unbalanced data. In the problem of detecting 

mitoses in histopathology images, class distribution for 

mitotic and non-mitotic cells is highly unbalanced, as 

there are usually very few mitoses against thousands of 

non-mitotic cells present in a sample tissue. 

Mitotic cells usually appear as dark cells with hairy 

extentions and a granular texture in biopsy images. These 

cells do not have a specific orientation in the tissue when 

the cross section of breast tissue is being imaged. Thus, 

our classification method should be based on rotation 

invariant features which tend to remain almost unchanged 

throughout cell division phases. The pipeline diagram of 

our proposed method is shown in Fig. 2. 

3.1 Pre-Processing 

The slides from different patients’s tissue samples 

differ in staining conditions and tissue appearance. Non-

standard staining leads to unwanted artifacts in the 

images. Moreover, each batch of slides appears with a 

different lighting and contrast when scanned under a 

microscope[2], sometimes leading to noisy, blurred 

images. Adaptive Histogram Equalization[19] is 

employed to imporve contrast of the input images. 

Adaptive histogram equalization is a contrast 

enhancement method that works by applying to each 

pixel, the histogram equalization mapping regarding the 

pixels in a region around it. 

Afterwards, the blue ratio image is calculated from 

each input image. Hematoxylin, which is a dark blue-

purple substance, has more concenteration in cell nuclei. 

Eosin, on the other hand, stains proteins with a pink color. 

In a stained tissue sample, sometimes the tissue is not 

stained homogenously, so using blue channel The contrast 

between mitotic cells and background tissue is enhanced 

in the blue ratio image. Blue ratio image is defined in 

equation 1: 

       
 

     
 

   

       
 (1) 

where R, G and B are values from Red, Blue and 

Green channels, for each pixel of the image. This 

transformation converts an RGB image to a single 

channel image. Fig. 3(b) shows the effect of pre-

processing on a sample image. 

3.2 Segmentation 

Adaptive thresholding[20] is used for cell 

segmentation. Biopsy images from batches of biopsy 

samples from different patients can have a wide range of 

luminance and appear with variable color intensities. It is 

not feasible to find a single threshold value to separate 

(darker) cells from 
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the rest of the tissue. Adoptive thresholding with a block 

size of 100 pixels and a threshold value of local 

neighbourhood’s mean value was used. The resulting 

image is noisy, so we perform a morphological openning 

action on it, removing all blobs smaller than a disk of 

radius 4 pixels. Seed points located in the center of weight 

of each cell was then extracted from the resulting binary 

image. To choose a seed point for each cell, we applied a 

Gaussian filter so that a dark to bright gradient forms in 

each blob. Afterwards, center points were detected using 

regional maximum detection. 

Lastly, a 6464  pixel window around each cells center 

was extracted to be used as training data. Mitotic and non-

mitotic cell nuclei closer than 8μm (approximately 32 

pixels) are treated as a single instance, as required by 

mitosis counting protocol. Thus, if a non-mitotic cells is 

present in a window containing a mitotic cell, they are 

treated as a single mitotic cell. Ground truth mitotic cells 

(annotated by the dataset) were separated from non 

mitotic cells to be fed to the AdaBoost classifier in the 

supervised training step. Fig 3(d) shows this step 

performed on a sample image. 

After separating the positive and negative classes, it was 

observed that there is a high imbalance in the number of 

two classes. There were about 800 mitotic figures present 

in the positive class, compared to at least 300,000 non-

mitotic cells or dark objects in the negative class. For 

input images, 60,000 of non-mitotic cell samples where 

randomly selected to train our classifier. Still, the count of 

mitotic cells versus non-mitotic cells shows a very high 

imbalance between the two classes. To mitigate this 

problem, we rotated each positive class sample that was 

not located near the edges of the image in 30 degree steps, 

saving each sample as a new sample. Using this method, 

the count of positive class was increased to around 9,000, 

versus 60,000 for negative class. Our data still remained 

imbalanced, but new instances of positive class result in 

improved classification performance. 

In breast tissue, cells do not have a specific 

orientation. In other words, a mitotic cell is still counted 

as a mitotic cell when veiwed from another angle. This 

idea suggests that features that are rotation-invariant 

should be selected Performance comparison of AdaBoost 

classifiers using various base-learners on our un-balanced 

data.  

 

3.3 Features and Feature Extraction 

Mitotic cells are often darker than other cells and 

appear to have hair like extensions. Mitoses do not take a 

specific orientation in the tissue, so their shape is captured 

from various angles in each instance. For features, a total 

of 112 features that distinguish intensity variations or 

texture pattern of each cell were selected. To include 

texture features, Local Binary Patterns, Haralick features 

and Entropy were selected. Local binary patterns assigns 

a binary number to each pixel by comparing its neighbour 

pixels to it[21]. Local binary patterns of input images 

were calculated. Histograms from the resulting images 

were calculated over 27 bins. Assuming most cell center 

points would be located in the center of the 64x64 pixel 

window. Moreover, another histogram from 32x32 pixel 

windows centered on each cell seed point was calculated. 

A vector of 54 float values was created from this feature. 

Haralick features[22] was used as a feature that 

captures texture and tone. Haralick Features First 

transforms image pixels into a co-occurrence matrix. This 

matrix is built according to approximity of each pixel 

with a certain intensity, with pixels that have other 

intensities. It then calculates a number of statistical 

features from the matrix. A vector of 56 float values was 

created from this feature. 

Lastly, eight samples from the positive class (mitotic 

cells) were selected. We selected these cells on the 

account that their shape represented what a normal 

mitosis would look like. Similarity to each of these 

samples was calculated for all training data using 

template matching method. In template matching, a 

template image T is slid in over a search image S while its 

sum of products between coefficients in pixels S(x, y) and 

T(x, y) is calculated for all pixels of the template image. 

If the two images were of equal dimentions, a higher sum 

simply means there two images have more smilarity. 

Eight float values were extracted as features using 

template matching with eight representative mitotic cells.  

 

 

 

 

 

 

 

 
                  (a)                                          (b)                                                (c)                                            (d)                               (e)                      (f)   
Fig 3. Steps of our proposed method performed on a sample tissue image. The original image is shown in figure (a). In figure (b), pre-processing is 

performed on previous image. Following this, the blue-ratio image is calculated from the previous step; the image is blurred, then a morphological 
openning action is performed on the image, removing smaller blobs (figure (c)). The center point of each blob is then taken as the seed point (figure 

(d)), and a        window over each center point is extracted, which is shown in figure (e). The extracted cells are then fed to the classifier, 
classifying each cell as mitotic or non-mitotic, shown in figure (f). 
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Fig 4. Performance comparison of AdaBoost classifiers using various base-learners on our un-balanced data 

 

3.4 Classification 

For classification, every learning algorithm will tend 

to suit we used AdaBoost[4], an ensemble learning 

method that combines the performance of many "weak" 

classifiers, to produce a powerful "commitee" out of 

them. For mitotic cell classification, various learning 

algorithms such as Random Forests[3], Cascaded 

AdaBoost[8] and SVM[18] have been used. AdaBoost’s 

ability to use various weak learners as its base learner 

makes it a good choice for classifer. An adaboost 

classifier can also rapidly tweak it’s base learners’ 

parameters to fit the dataset, usually without overfitting in 

practice. For the case of two-class classification with 

AdaBoost, suppose we have a pool of             

weak classifiers, each being an expert when classifying a 

subset of the input data. For a given input xi each 

classifier kj votes for its opinion  (  )  *    + . The 

final class decided by this ensemble learning method for 

xi will be      ( (  )) where the cost function  (  ) is 

defined as [23]: 

 (  )      (  )    (  )        (  )  (2) 

where   denotes the weights that we assign to the 

opinion of each classifier  . The classifiers    -also 

known as base estimators or weak learners- can be a 

combination of any types of classifiers. The AdaBoost 

classifier used in this research, uses only a single type of 

classifier as the base estimator in each test. 

The pseudocode for AdaBoost algorithm is as 

follows[23]: 

For a two-class classification problem, we have T 

input points    and T labels yi taking values of {-1, 1} for 

the two classes respectively. 

Initial weights    are assigned to all data points   . Let 

  be the sum of weights wi of all data points and Let     
be the sum of weights of mis-classified inputs for the 

considered classifier. 

To choose   classifiers from a pool of classifiers, we 

perform M iterations: 

At the  -th iteration, the classifier with the lowest rate 

of weighted error We is chosen and added to the list of 

chosen classifiers. In each iteration, AdaBoost 

systematically extracts a classifier from the pool of 

classifiers by recording how many of the 

multidimentional xi points it succeeds to classify. At the 

beginning, all of the base estimators have the same 

weight. After each iteration, the more difficult xi’s remain 

to be classified correctly, so AdaBoost’s algorithm 

assigns a larger weight to them. The process of drafting 

classifiers, tries to add new classifiers to the selected 

classifiers at each iteration, so that the overall 

performance improves. 

4. Implementation and Evaluation 

A series of tests were performed on 11 AdaBoost 

classifiers which had various classifiers as their base 

learner. In each test a different base estimator was used 

and the classification performance was measured with 5-

fold cross-validation tests. The measures evaluated in our 

tests were Recall, Percision and F1 score. There has been 

a few mitos detection contests to date, namely ICPR 

2012, AMIDA-13 and Mitos-Atypia-2014. Being a 

weighted average of Percision and Recall, F1 score was 

used as the main measuring criteria for comparison in 
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for     to     
1. Choose a classifier km from the pool of classifiers, which 

would minimize  

2.   Set ,   ,the weight of the classifier    to  
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3. Update the weights of each xi for the next iteration. If 
classifier km successfully classifies   , set  

 otherwise set  
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these contests; Accordingly, we too used F1 score to rank 

our classifiers’ performance. 

4.1 Dataset 

The dataset used in this research is MITOS-ATYPIA-

14. This dataset contains a set of breast cancer biopsy 

slides taken from 16 patients and prepared according to 

standard laboratory protocols. The images are scanned 

using two WSI devices: Aperio Scanscope XT and 

Hamamatsu Nanozoomer 2.0-HT. In this research we 

only use the 1,136 frames that have X40 magnification, 

provided from the Aperio device, and stored as 24 bit 

RGB bitmap images in TIFF format. The slides are 

stained with standard H&E dyes which stain cell nuclei 

with a purple-blue hue while staining underlying tissue 

with a pink color. The slides are from different batches, 

scanned under various lighting conditions and are not 

stained uniformly, to be as realistic as possible. 

4.2 Implementation and Parameters 

Our classifer was implemented in Python 2.7 on a 64-

bit Intel(R) Core(TM) i7-4700MQ processor setup with 

8GBytes of RAM. The AdaBoost classifier was provided 

by the Open-Source Scikit-learn library[24]. 

We use a number of classifiers as base learners for our 

main AdaBoost classifier. Some of these classifiers are 

weak classifiers (for this particular problem), others being 

strong component classifiers. The authors in [25] 

suggested that using strong component classifiers in 

AdaBoost is not viable and most likely will result in 

overfitting. However, findings in [26] show that when 

SVM (usually considered a strong classifier) is used as a 

base estimator with only a small subset of training data 

fed to it, it can act as a weak classifier; The resulting 

classification performance may even be greater than that 

of a SVM classifier or an AdaBoost with other component 

classifiers. 

Classifiers that can be used in an AdaBoost are those 

that can assign weights to their input data, as this function 

is essential to AdaBoost’s boosting algorithm. The 

classifiers that were used as base learners are: 

    1.  AdaBoost (as base-learner)  

    2.  Bernouli Naive Bayes  

    3.  Decision Trees  

    4.  Extra Trees  

    5.  Gaussian Naive Bayes  

    6.  Logistic Regression  

    7.  NuSVC  

    8.  Perceptron  

    9.  RandomForest (as base-learner)  

    10.  RidgeClassifier  

    11.  SGDclassifier  

 The main AdaBoost classifier used 400 base 

estimators; i.e the main AdaBoost classifier used 400 

Perceptrons when using Perceptrons as base estimators. 

Classifying performance of each resulting classifier was 

measured and compared, which is presented in TABLE 1. 

Of the mentioned classifiers, some are based on decision 

trees, some on neural networks and some others are 

regressors which can be used as classifiers. 

4.3 Evaluation 

When test cells are classified into mitotic (positive) or 

non-mitotic (negative) classes, we can evaluate our 

classifier’s performance. To evaluate the problem of two-

class classification, we use three evaluation criteria:   

 Precision: The fraction of instances detected by the 

classifier to those that are relavant. Precision is 

defined as:  

   
  

     
 (3) 

 Recall: The fraction of relavant instances to those that 

are detected by the classifier. Recall is defined as: 

   
  

     
 (4) 

 

 F1 Score: harmonic mean of Recall and Precision. F1 

score is defined as:  

   
      

     
 (5) 

where TP (True Positives) is the count of cells 

correctly classified as mitotic. Respectively, FP (False 

Positives) is the count of cells that are wrongly classified 

as mitotic. True Negatives (TN) are cells correctly 

classified as non-mitotic. False Negatives (FN) are in fact 

mitotic cells, but are wrongly classified as non-mitotic. 

The performance of our main AdaBoost classifiers 

varied based on the type of base estimators the main 

classifier used. It was observed that, without tweaking 

parameters or assigning any weights to classes, an 

AdaBoost classifier that used Logistic Regression as its 

base estimator had the best performance when classifying 

highly imbalanced data of mitotic cells. The mentioned 

classifier achieved an F1 score of 0.85, Recall of 0.82 and 

Precision of 0.90. 

The best recall among our classifiers belongs to an 

AdaBoost that uses Decision trees as its base estimator, 

with a recall score of 0.83. The best precision belongs to 

an AdaBoost that uses Random forests as its base 

estimator, with a precision score of 0.93. We compared 

the peformance of our classifier with the reported F1 

scores from a number of competing methods. The results 

are shown in Fig. 5, 6 and 7. We compared our average 

F1Score from 5-fold cross-validation on the input images. 

Using cross-validation, we ensure that the test data used 

for measuring performance is not known to our classifier 

beforehand, thus, measuring the accuracy of our 

perdictive model in practice. 

An AdaBoost classifier using Logistic Regression as 

base estimator achieved the highest performance when 

classifying highly imbalanced data of mitotic cells, 

without tweaking parameters. It was also observed that 

tweaking parameters, i.e changing estimators count, 

tweaking class weights or running iteration had little 

influence (less than 5%) on classification performance. 
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5. Conclusion and Future Work 

Using adaptive thresholding on blue-ratio images of 

H&E stained breast tissue scanned images, candidate cells 

were segmented from underlying background tissue. A 

feature vector of length 144 was then extracted from each 

input cell image. The extracted features were a number of 

texture and pattern features. Finally, the input cells were 

classified using AdaBoost, an ensemble learning method 

based on boosting. Input data formed two classes: Mitotic 

and Non-mitotic. There was a high imbalance between the 

number of the two classes in our training data. To 

mitigate class unbalance, rotated versions of mitotic cells 

were also added to the positive class. We tested a number 

of classifiers as base learners for our main AdaBoost 

classifier and compared their performance. It was 

observed that, an AdaBoost classifier that used Logistic 

Regression as base learner had the best performance when 

classifying our highly imbalanced set of data. Our results 

show a significant improvement over similar existing 

methods. 

In future, we plan to employ neural networks to add 

more features to our classifier. We are also considering 

using neural networks as a filter applied to the input 

images, for the task of segmenting cells from background 

tissue. Classic methods such as thresholding or 

morphological operations tend to miss some cells when 

the H&E staining process is not performed uniformly on 

the tissue, or when lighting conditions are not the same 

when biopsy slides are scanned. 

 

 
 

Fig 5. Performance results: F1-Score of our method compared with 

competing methods from MITOS-14, ICPR2012, AMIDIA-13 contests.  IDSIA[6], 

REMSS[3], IPAL[27], SUTECH[12], NEC[7]. 

 

 

Fig 6. Performance results: Recall of our method compared with competing 

methods from MITOS-14, ICPR2012, AMIDIA-13 contests.  IDSIA[6], 

REMSS[3], IPAL[27], SUTECH[12], NEC[7]. 

 

Fig 7. Performance results: Precision of our method compared with competing 

methods from MITOS-14, ICPR2012, AMIDIA-13 contests.  IDSIA[6], 

REMSS[3], IPAL[27], SUTECH[12], NEC[7]. 

 

 

 

Table 1: Performance measures showing Recall, Precision and F1 Score 
for AdaBoost classifers with various base learners 

Base Learner  Recall  Precision  F1Score 

AdaBoost   0.69   0.73   0.71 

Bernouli Naive Bayes   0.54   0.34   0.40 

Decision Trees   0.83   0.71   0.76 

Extra Trees   0.57   0.62   0.59 

Gaussian Naive Bayes   0.58   0.52   0.55 

Logistic Regression   0.82   0.90   0.85 

NuSVC   0.72   0.42   0.50 

Perceptron   0.82   0.85   0.83 

Random Forest   0.64   0.93   0.74 

Ridge Classifier   0.81   0.83   0.81 

SGD Classifier   0.81   0.73   0.75 
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