
 
* Corresponding Author 

Polar Split Tree as a Search Tool in Telecommunication 

Farzad Bayat 
Department of Electrical and Computer Engineering, Faculty of Engineering, Kharazmi University 

std_farzadbayat@khu.ac.ir 

Zahra Nilforoushan* 
Department of Electrical and Computer Engineering, Faculty of Engineering, Kharazmi University 

nilforoushan@khu.ac.ir 

 

Received: 24/Feb/2018            Revised: 22/Aug/2018            Accepted: 16/Sep/2018 

 

Abstract 
Tree search algorithms are vital for the search methods in structured data. Such algorithms deal with nodes which can 

be taken from a data structure. One famous tree data structure is split tree. In this paper, to compute the split tree in polar 

coordinates, a method has been introduced. Assuming that the algorithm inputs (in form of points) have been distributed in 

the form of a circle or part of a circle, polar split tree can be used. For instance, we can use these types of trees to transmit 

radio and telecommunication waves from host stations to the receivers and to search the receivers. Since we are dealing 

with data points that are approximately circular distributed, it is suggested to use polar coordinates. Furthermore, there are 

several researches by search algorithms for the central anchor which leads to the assignment of a virtual polar coordinate 

system. In this paper, the structure of Cartesian split tree will be explained and the polar split tree will be implemented. 

Then, by doing nearest neighbor search experiments, we will compare the polar split tree and polar quad tree in terms of 

searching time and amount of distance to the closest neighbor and in the end, better results will be achieved. 

 

Keywords: Split Tree; Polar Split Tree; Quad Tree; Polar Quad Tree; Nearest Neighbor Search. 
 

 

1. Introduction 

As it is apparent‎, ‎nearest neighbor search can be used 

in a lot of cases relating to distance and it can also be used 

in classifying and clustering the data as a similarity 

criterion‎. ‎Depending on the case‎, ‎various algorithms can 

be used for nearest neighbor search‎. ‎For instance we can 

find the nearest neighbor by searching trees including 

quad tree and split tree which will be briefly explained 

later‎. ‎In some cases‎, ‎depending on the case and the space 

in which the data are located‎, ‎it is better to use polar 

coordinates‎. ‎That’s‎ the‎ reason‎ why‎, ‎we‎ presentew a 

method for the polar split tree. This algorithm has been 

compared with polar quad tree and the obtained results 

are compared in terms of searching time and the amount 

of distance to optimal response‎. ‎ 

In the first section of this paper‎, ‎searching trees and 

finding the nearest neighbor have been reviewed‎. ‎In 

Section 2‎, ‎quad tree and the method of computing it will 

be explained‎ . ‎Section 3 is devoted to the split tree‎ . ‎In 

Section 4‎, ‎polar coordinates and some of its applications 

will be mentioned‎ . ‎In Section 5 we will indicate the way 

of construction and searching in polar quad trees‎. ‎In 

Section 6‎, ‎polar split tree is introduced and how to search 

the nearest neighbor by using this tree is defined‎ . ‎Section 

7 is devoted to the investigating the efficiency of our 

proposed method and comparison of polar quad tree with 

polar split tree‎. ‎Finally in Section 8‎, ‎the conclusion and 

summing-up of the proposed algorithm are mentioned‎. 

 

2. Quad Tree 

‎The quad tree is a rooted tree whose internal node 

contains four children and each node represents one 

square‎. ‎te,‎ t‎  oF‎ f‎ eP‎ tes F r‎ Fhe primary square of them 

is a square that contains all points of ‎‎P‎‎ and is the root of 

the tree that corresponds with partitions‎. ‎If node ‎‎v‎‎ 
contains a child‎, ‎the squares relating to its children will be 

the four areas of square ‎‎v‎‎‎. ‎That’s‎why this tree is called 

quad tree‎. ‎In other words‎, ‎the leaf squares form a subset 

of root square and this subset is the subset of the quad 

tree‎. ‎Fig. 1 indicates the quad tree and its subsets‎.  
 

 
Fig. 1. A sample of quad tree and its subsets 

‎The root children are called ‎‎NE‎‎, ‎‎NW‎‎, ‎‎SW‎ ‎and ‎‎‎SE‎‎ that 

specify in which square they belong to. For example, ‎‎NE‎‎ 

belongs to northeast square‎, ‎‎‎NW‎‎ belongs to northwest 

square‎, etc. 

‎Quad tree is used to save different kinds of data‎. ‎For 

saving the a set of points in a plane‎, ‎the square division 

will continue recursively as long as there is more than one 

point in a square‎. ‎Thus the quad-tree for ‎‎P‎‎ inside the 

mailto:std_farzadbayat@khu.ac.ir
mailto:nilforoushan@khu.ac.ir


 

Farzad Bayat and Zahra Nilforoushan, Polar Split Tree as a Search Tool in Telecommunication 

 

158 

square   [         ]  [         ]  is defined as 

follows‎: ‎ 
 If the number of points of ‎‎P‎‎ are less than or equal 

to 1‎, ‎the quad tree will just contain one leaf‎.  

 ‎Otherwise            ‎t  ‎    show four areas 

of   as follows‎: 
 

                  ‎ 
 

                  ‎ 
 

‎f     t  ‎f‎ ‎‎t      ‎ t        

‎f     t  ‎f‎ ‎‎t      ‎ t        

‎f     t  ‎f‎ ‎‎t      ‎ t        

‎f     t  ‎f‎ ‎‎t      ‎ t        
 

 
Fig. 2. A simple quad tree 

Lemma 2.1. The depth of quad tree for the set ‎‎P‎‎ of 

points in the plane is at most ‎‎log(s/c)+3/2‎‎ in which ‎‎c‎‎ is 

the smallest distance between every two points in ‎‎P‎‎ and ‎‎s‎‎ 
is the lateral length of the primary square containing 

points of ‎‎P‎‎ ‎. (‎For a proof refer to [3])‎.  
Theorem 2.2.‎ ‎A quad tree with the depth of  ‎‎d‎‎ is for 

saving ‎‎n‎‎ points containing ‎‎O((d+1)n)‎‎ nodes and can be 

constructed with time complexity of ‎‎O((d+1)n)‎‎‎. ‎(For a 

proof  refer to [3])‎.  

3. Split tree 

The split tree for a set of points P is a rooted binary 

tree data structure containing the points of P in its leaves. 

Split tree can be used as a searching tree in finding the 

nearest neighbor [10]‎. ‎In split tree algorithm‎, ‎each time 

the bounding box of inputs is considered and then the 

longest edge of it will be halved and the bounding box 

will be drawn for the left and right sub tree as long as the 

points inside the box is more than one point‎  In other 

words‎, ‎if there is one point inside the bounding box‎, then 

the split tree consists of one single node that stores that 

point and the algorithm will stop‎.  
Theorem 3.1.‎‎‎ A split tree is constructed for saving ‎‎n‎‎ 

points. Its time complexity in the worst case and in the 

best case are       and O(nlogn)‎ respectively and ‎its 

height is ‎    ‎. ‎[10]‎  
‎ 

 
Fig. 3. A sample of split tree algorithm 

For improving the complexity of split tree‎, ‎partial split 

tree algorithm has been introduced whose threshold 

is ‎‎n/2‎‎‎. It means that in each step a bounding box will be 

drawn for left and right children only if the numbers of 

their points are more than ‎‎n/2‎‎‎. ‎Thus‎, ‎the number of 

children in the last level of tree can be between ‎‎1‎‎ and ‎‎n/2‎‎‎.  
 

‎  
Fig. 4. A sample of partial split tree algorithm 

4. ‎Polar Coordinate and its Applications 

telt, coordinates is a two-dimensional coordinate 

system where each point p is represented by      . The 

distance of each point to the center of the coordinate is r 

and    is the angle between x-axis and the line connecting 

p and the center of the coordinate [1,7 20]. 

A point can be converted from Cartesian coordinate to 

polar coordinate (and vice versa) as follows‎: 
 

‎‎‎       ‎‎‎‎‎‎‎‎‎‎‎        

        ‎‎‎‎‎‎‎‎           
 

‎  
Fig. 5. A sector of the circle with angle     and arc length    L   

For computing the length of arc L relating to angle 
  in a circle with the radius r, the formula L = r‎  must 
be used. 

‎Polar coordinate can be used in most of physics 

equations such as circular movement of central force and 

planets rotation‎. ‎Furthermore‎, ‎in cases in which the data 

have been distributed in the form of a circle or part of a 

circle‎, ‎polar coordinate can be used‎. ‎For instance‎, ‎when 

the data are in form of radio or telecommunication 

waves‎, ‎as we are dealing with shapes which are 

approximately circular, ‎using polar coordinate is 

recommended‎ [2,17,19,21]. 

‎In the following parts‎, ‎polar quad tree and polar split 

tree will be investigated‎.  



 

Journal of Information Systems and Telecommunication, Vol. 6, No. 3, July-September 2018 159 

5. Polar Quad Tree 

‎A polar quad tree is a tree data structure in two-

dimensional polar metric space in which each internal 

node has exactly four children. It is most often used to 

partition a two-dimensional space by recursively 

subdividing it into four subsectors or regions. A polar 

quad tree with k levels has    leaf cells, defined by    

angular and    radial divisions. There are many 

applications for polar quad trees [4,8,13,18,22]. For 

drawing quad trees, the square covering input points is 

drawn and as long as the number of points in each square 

is more than 1‎, ‎each square will be recursively divided 

into four parts‎. ‎For drawing polar quad tree (PQT)‎, ‎the 

same steps must be followed as well but we are dealing 

with arc and part of radius  instead of square‎ sides.  

5.1 Construction of Polar Quad Tree‎ 

The following steps shall be done for constructing the 

polar quad tree for input points P: 

‎1. Draw the smallest circle containing the points‎.  

2. Divide the circle containing input points into four 

equal parts by two perpendicular diameters‎.  

3. Divide each quarter of the circle into four parts 

recursively. For dividing one quarter of the circle into four 

parts‎, ‎we first halve the radius and then halve the related 

arc. The numbering could be done similar to Fig. 6. 
 

‎  
Fig. 6. Numbering polar quad tree 

4. In Fig. 6, for dividing the children similar to areas 

corresponding ‎‎1‎‎ and ‎‎3‎‎‎, ‎follow the previous steps. But for 

dividing the children similar to ‎‎2‎‎ and ‎‎4‎‎‎, ‎half both the 

related arc and the part of radius located in that cell‎.  
5. Repeat steps (1) to (4) as long as there is more than 

one point‎.  
 

 
Fig. 7. A sample of polar quad tree 

 

‎The pseudo code of the polar quad tree construction is 

as following‎: 

‎Polar_Quad_Tree_Construction (DataPoints P):  

1. Compute smallest circle C enclosing P with 

Nimrod Mojido Algorithm [9]. 

2. Divide the circle into 4 parts: Part1, Part2, 

Part3, ‎Part4; Fig. 6  
3. If part1 has more than one data‎, ‎then call 

Polar_Quad_Tree_Construction (Part1) and 

add it as first child of C.   

4. If part2 has more than one data‎, ‎then call 

Polar_Quad_Tree_Construction (Part2) and 

add it as second child of C. 

5. fP part3 has more than one data‎, ‎then call 

Polar_Quad_Tree_Construction (Part3) and 

add it as third child of C. 

6. If part4 has more than one data‎, ‎then call 

Polar_Quad_Tree_Construction (Part4) and 

add it as forth child of C. 

7. Return C. 

8. End‎. 
 

Note that the smallest enclosing circle for a set of n points 

in the plane can be computed in O(n) expected time [9]. 

Hence the time complexity of constructing polar quad tree is:  
 

T(n)=max{O(n), 4T(n/4)+O(n)}=O(nlogn). 
 

eor‎siuicar‎tree‎strulture‎see‎[6,11,14,16]‎. 

5.2 The Nearest Neighbor Search in Polar Quad Tree‎ 

After constructing the polar quad tree (dividing each 

cell into four parts‎) our‎next‎ jo ‎ is‎ to‎ tinw‎ the nearest 

neighbor for each query point in the polar quad tree. ‎To‎

this‎enwi‎we average the x and y coordinates of the points 

inside quarter 1 and 4‎. ‎Let the average of the points inside 

quarter ‎‎1‎‎ be‎ ‎(‎  
 r      and the average of the points inside 

quarter  ‎‎ be‎ (‎  
 r     . ‎If we want to search a query point 

( ‎  r    ‎, ‎the coordinate of it is compared using the 

following formula: 
 

‎      
    

    ‎r       
    

     
 

Then we decide which subset of the tree should be 

chosen to continue the search‎. 
 If       and      ‎, ‎quarter 4 will be 

chosen for searching‎, 
 If       and      ‎, ‎quarter 3 will be 

chosen for searching‎, 
 If       and      ‎, ‎quarter 2 will be 

chosen for searching‎, 
 If       and      ‎, ret,Fo, 1 will be 

chosen for searching‎. 
e ‎ sFFo,tFs a‎ Fts ‎  oarching method, we find a leaf in 

the polar quad tree that‎ the query point belongs to. 
 



 

Farzad Bayat and Zahra Nilforoushan, Polar Split Tree as a Search Tool in Telecommunication 

 

160 

 
Fig. 8. Nearest neighbor search using polar quad tree   

The correctness of this algorithm follow from the fact 

that for a given query point      r     inside the 

smallest enclosing circle   of data, according to the 

values of radius    and angle    of   , the point   is 

located in one of the four division regions. If the region 

containing   does not have more than one data, it will no 

longer be divided into four parts, and corresponding to it 

in the tree is a leaf indicating the region containing the  . 

In this case, the search will terminate. If the region 

containing   contains more than one data, it is divided 

into four parts again (in the same way that each side of it 

is halved), and   is placed in one of the four regions 

according to the two values    and   . 

This process is recursively repeated until we reach to a 

leaf on the corresponding tree; that leaf has labeled with 

the name of region containing  . 

In particular, in Fig. 9, the point   with the * sign is 

contained in the gray region which corresponds to the 

gray color leaf of the corresponding tree. 

 

 
Fig. 9. A sample of nearest neighbor search for query point * using polar 

quad tree  and corresponding search tree 

As a result, finding the nearest neighbor in a polar 

quad tree can be computed in average case  

S(n)=T(n)+logn=O(nlogn), 

where T(n) is the average time complexity of polar 

quad tree construction. 

6. Polar Split Tree 

‎The polar split tree is a hierarchical rooted binary tree 

data structure in two- dimensional polar metric space 

which can be used as a searching tree in finding the 

nearest neighbor in polar metric spaces. Using polar split 

trees will usually improve the results obtained by the 

polar quad trees [5,15]. There are two steps for 

investigating polar split tree (PST)‎, ‎first the polar split 

tree is calculated and then the procedure of finding the 

nearest neighbor search in polar split tree is explained. ‎In 

the following ‎these two steps are explained‎.  

6.1 Construction of Polar Split Tree‎ 

‎For construction the polar split tree‎, ‎it is assumed that 
input data have been distributed in a circular shape‎. ‎At 
first‎, ‎based on Nimrod Megiddo algorithm‎, ‎the smallest 
circle containing all points must be drawn [12]‎ ‎tskt‎Ftco ‎
‎‎O(n)‎‎ time. ‎Then similar to split tree in Cartesian 
coordinate‎s, ‎the longest edge must be halved. In order to 
do that, two components of angle and arc of the circle 
perimeter are compared and the one which is bigger‎, ‎will 
be halved‎. ‎For starters‎, we halve the perimeter of the 
circle. Then‎, ‎we draw one ot‎the‎lirlce’s‎wiaueters‎anw‎as‎
a result the circle containing the points will be halved‎.‎ 
Therefore the covering circle will be drawn for the left 
and right sub trees (part of a circle which is located at the 
center of the primary circle) and the length of radius 
sector will be compared with the angle sector and the one 
which is greater will be halved‎. ‎The steps will continue 
recursively as long as there is just one point in the 
covering circle‎. For drawing the tree, we use the 
convention that, ‎initially the horizontal diameter parallel 
to ‎‎x‎‎-axis is drawn and the upper part and lower part of the 
circle will be the right and left child respectively‎.  

‎In next steps‎, ‎the right upper part will be the right 

child‎, ‎the left upper part will be the left child‎, ‎the right 

lower part will be the right child and the left lower part 

will be the left child‎. ‎Finally‎, ‎there will be a polar split 

tree‎. ‎Fig. 10 indicates a sample of a polar split tree for set 

of 20 random input points‎. The pseudo-code for polar 

split tree construction is as follows‎: 

Polar_Split_Tree_Construction (DataPoints P) 

1 Compute the smallest circle C containing P using 

Nimrod Mojido Algorithm [9]. 

2 Divide the circle into two parts: Part1 and Part2. 

3 Compute the smallest subsector covering points of 

Part1 and Part2, say S1 and S2. 

4 Compare the length of arc and radius of S1 (and 

similarly for S2) and half the bigger one into Part 3 and Part4. 

5 If Part 3 has more than one data‎, ‎then go to line 4. 

6 If Part 4 has more than one data‎, ‎then go to line 4. 

7 End 



 

Journal of Information Systems and Telecommunication, Vol. 6, No. 3, July-September 2018 161 

‎‎  
Fig. 10. A sample of polar split tree  

6.2 Complexity of Polar Split Tree 

As a polar split tree can be obtained by drawing a 

circle and we can draw a circle at least by three points, 

there will be two situations. Two points will be in one 

quarter and the other one will be in another quarter or 

every of these three points will be located in individual 

quarters. Therefore, considering the location of the points, 

the maximum depth of the tree will be O(n). On the other 

hand, since this tree is a binary tree, the minimum depth of 

the tree will be the depth of a complete tree, i.e. O(logn), 
and we have O(logn)       O(n). If there are points and 

the worst case of the tree happens, the depth of the tree will 

be O(  ) and the time constructing tree in the worst case 

will be and in the best case the height will be O(logn) and 

the time of constructing the tree will be O(nlogn). 

6.3 The Nearest Neighbor Search in the Polar 

Split Tree 

‎After construction the polar split tree for the set of input 
points‎, ‎some random query points are tested to see whether 
this tree specifies the nearest neighbor to the point correctly 
or not‎. If for finding the nearest neighbor to the query point 
we just suffice to the search in the tree‎, ‎in some cases the 
answer will be right and in some cases it will be wrong. ‎The 
wrong answer will happen when the nearest point to the 
query point is in a cell to‎ whilh‎ the‎ query‎ point‎ woesn’t‎
belong. But since the recursive functions use a depth first 
search mechanism‎, ‎the point which is in the same cell as the 
query point will be chosen as the nearest neighbor‎ and this 
answer is wrong‎. ‎As it can be seen in Fig. 11‎, ‎the query point 
which has been shown by * is nearer to point ‎‎A‎‎ but the tree 
recognizes point ‎‎B‎‎ as the nearest point because the query 
point is located in the cell belonging to ‎‎B‎‎‎.  

‎  
Fig. 11. Wrong output in the nearest neighbor search  

‎For solving this problem‎, ‎we will perform the search in 

kd-tree algorithm described in [23]‎. In kd-tree 

algorithm‎, ‎when point ‎‎x‎‎ is found as the nearest point to the 

query point ‎‎p‎‎, ‎the distance between ‎‎x‎‎ and ‎‎p‎‎ is calculated 

and called ‎‎r‎‎, i.e., d(x,p)=r. Then a circle with center ‎‎p‎‎ and 

radius ‎‎r‎‎ is drawn ‎and the cells which are completely or 

partially inside this circle are investigated. Then the 

distance between the points inside every of these cells 

and ‎‎p‎‎ is calculated‎. ‎If this distance is less than ‎‎r‎‎‎, ‎‎we‎upwate‎

‎r‎‎ and the nearest neighbor point. A circle is drawn with 

radius ‎‎r‎‎ and center ‎‎p.‎‎ Then the previous steps will be done 

relursivecy‎as‎ cong‎as‎ there‎won’t‎ e‎any‎lhange‎ in ‎‎r‎‎ and 

the nearest neighbor point‎. ‎In the last step‎, ‎the calculated 

point ‎‎x‎‎ is the nearest neighbor to the query point ‎‎p‎‎‎. ‎[12]‎  
 

 
Fig. 12. Nearest Neighbor Search by polar split tree  

‎The nearest neighbor searching pseudo code in polar 

split tree will be as following‎ :  

‎Spt_NNS (Root root, Query QPoint) 

1 CurNode = root 

2 distance = biggest integer number 

3 Start from root. 

4 If root has no children‎, ‎then return null 
5 If root has a child C which is a leaf and its value   

   is lower than distance, then distance = value of C,  

   and return distance 

6 If QPointX<=CurNodeX 

7     If QPointY-distance<=CurNodeY 

8        ‎If it has a left child‎, ‎then return Spt_NNS   

          with left child 

9     If QPointY-distance>CurNodeY 

10        ‎If it has a right child‎, ‎then return Spt_NNS   

          with right child 

11 Else 
12     If QPointY-distance>CurNodeY 

13        ‎If it has a right child‎, ‎‎then return Spt_NNS   

          with right child 

14     If QPointY-distance<=CurNodeY 

15        ‎If it has a left child‎, ‎then return Spt_NNS   

          with left child 

16 End 
 

In order to see the correctness of this algorithm  note 

that for a given query point   inside the smallest 

enclosing circle   of data, if   is in the northern or 

southern semicircle of  , in the corresponding tree   we 



 

Farzad Bayat and Zahra Nilforoushan, Polar Split Tree as a Search Tool in Telecommunication 

 

162 

move from root to the left or right respectively. In each 

semicircle that   is located, we calculate the bounding 

box   for the data of that semicircle according to the 

Polar_Splite_Tree_Construction algorithm and split the 

largest side into two halves. If the line that divides   into 

two halves is an arc line,   is divided into two upper and 

lower halves, and if   is in the upper or lower part of  , 

in   we move to the left or right. If the line that divides   

into two halves is a radial line,   is divided into two 

halves left and right, and if   is in the left or right part of 

 , in   we move to the left or  right. 

These steps are recursively repeated until we reach to 

a leaf of   which has labeled by the name of area 

containing  . 

In particular, in the Fig. 13, the point   is displayed 

by * and the area containing it (the gray zone) is 

corresponds to the gray color leaf of  . 

 

 
Fig. 13. A sample of nearest neighbor search for query point *  using 

polar split tree  and corresponding search tree 

 
Fig. 14. Comparing PST and PQT in terms of time and distance for 100 input points 

Row# DataSet# QuerySet# QueryPoint 1NN Distance Time(ns) 1NN Distance Time(ns) Row# DataSet# QuerySet# QueryPoint 1NN Distance Time(ns) 1NN Distance Time(ns)

1 1 1 (2,-7) (4,-25) 18.11077028 0.09375 (6,-22) 15.5241747 0.046875 51 6 1 (2,-7) (-7,-14) 11.40175425 0 (14,-30) 25.94224354 0.09375

2 1 2 (-9,8) (-7,-27) 35.05709629 0.015625 (-31,-22) 37.20215048 0.046875 52 6 2 (-9,8) (-7,-14) 22.09072203 0.015625 (-23,-16) 27.78488798 0

3 1 3 (0,-5) (4,-25) 20.39607805 0 (6,-22) 18.02775638 0.03125 53 6 3 (0,-5) (-7,-14) 11.40175425 0 (14,-30) 28.65309756 0.03125

4 1 4 (9,1) (4,-25) 26.47640459 0.03125 (-31,-22) 46.14108798 0 54 6 4 (9,1) (3,24) 23.76972865 0.015625 (-23,-16) 36.23534186 0

5 1 5 (2,-4) (4,-25) 21.09502311 0.03125 (6,-22) 18.43908891 0.03125 55 6 5 (2,-4) (-7,-14) 13.45362405 0 (14,-30) 28.63564213 0.03125

6 1 6 (5,8) (-6,33) 27.31300057 0.015625 (-31,-22) 46.86149806 0 56 6 6 (5,8) (3,24) 16.1245155 0.015625 (-23,-16) 36.87817783 0

7 1 7 (-7,-6) (-7,-27) 21 0.015625 (6,-22) 20.61552813 0 57 6 7 (-7,-6) (-7,-14) 8 0 (1,-36) 31.04834939 0

8 1 8 (-6,7) (4,-25) 33.52610923 0 (-31,-22) 38.28837944 0 58 6 8 (-6,7) (-7,-14) 21.02379604 0.015625 (-23,-16) 28.60069929 0

9 1 9 (-4,0) (4,-25) 26.2488095 0.015625 (6,-22) 24.16609195 0 59 6 9 (-4,0) (-7,-14) 14.31782106 0.03125 (-23,-16) 24.8394847 0

10 1 10 (5,9) (-6,33) 26.40075756 0.03125 (-31,-22) 47.50789408 0.015625 60 6 10 (5,9) (3,24) 15.13274595 0.015625 (-23,-16) 37.53664876 0

11 2 1 (2,-7) (-14,0) 17.4642492 0.03125 (-7,-3) 9.848857802 0.03125 61 7 1 (2,-7) (7,-11) 6.403124237 0 (9,-15) 10.63014581 0.03125

12 2 2 (-9,8) (-14,0) 9.433981132 0 (-32,1) 24.04163056 0 62 7 2 (-9,8) (7,-11) 24.8394847 0 (-9,-6) 14 0

13 2 3 (0,-5) (-14,0) 14.86606875 0.015625 (-7,-3) 7.280109889 0 63 7 3 (0,-5) (-6,-1) 7.211102551 0.03125 (9,-15) 13.45362405 0.015625

14 2 4 (9,1) (-14,0) 23.02172887 0.03125 (-32,1) 41 0 64 7 4 (9,1) (7,-11) 12.16552506 0 (-2,-6) 13.03840481 0

15 2 5 (2,-4) (-14,0) 16.4924225 0.03125 (-7,-3) 9.055385138 0 65 7 5 (2,-4) (-6,-1) 8.544003745 0.03125 (9,-15) 13.03840481 0.03125

16 2 6 (5,8) (-14,0) 20.61552813 0.03125 (-32,1) 37.65634077 0.03125 66 7 6 (5,8) (-6,-1) 14.2126704 0 (-2,-6) 15.65247584 0

17 2 7 (-7,-6) (-14,0) 9.219544457 0.015625 (-7,-3) 3 0 67 7 7 (-7,-6) (7,-11) 14.86606875 0.03125 (9,-15) 18.35755975 0.03125

18 2 8 (-6,7) (-14,0) 10.63014581 0 (-32,1) 26.68332813 0.015625 68 7 8 (-6,7) (7,-11) 22.20360331 0 (-9,-6) 13.34166406 0

19 2 9 (-4,0) (-14,0) 10 0 (-32,1) 28.01785145 0.03125 69 7 9 (-4,0) (-6,-1) 2.236067977 0 (-2,-6) 6.32455532 0.03125

20 2 10 (5,9) (-14,0) 21.02379604 0.03125 (-32,1) 37.85498646 0.03125 70 7 10 (5,9) (-6,-1) 14.86606875 0 (-2,-6) 16.55294536 0.03125

21 3 1 (2,-7) (-7,-3) 9.848857802 0.015625 (14,-17) 15.62049935 0.015625 71 8 1 (2,-7) (9,-15) 10.63014581 0 (-2,-33) 26.30589288 0

22 3 2 (-9,8) (-8,5) 3.16227766 0.015625 (-46,-21) 47.01063709 0 72 8 2 (-9,8) (-9,-6) 14 0 (-23,-18) 29.52964612 0

23 3 3 (0,-5) (-7,-3) 7.280109889 0 (-46,-21) 48.70318265 0.015625 73 8 3 (0,-5) (9,-15) 13.45362405 0.03125 (-2,-33) 28.0713377 0

24 3 4 (9,1) (-7,-3) 16.4924225 0.015625 (-46,-21) 59.23681288 0.03125 74 8 4 (9,1) (22,16) 19.84943324 0.015625 (10,-14) 15.03329638 0

25 3 5 (2,-4) (-7,-3) 9.055385138 0 (-46,-21) 50.92150823 0.046875 75 8 5 (2,-4) (9,-15) 13.03840481 0 (-2,-33) 29.27456234 0.03125

26 3 6 (5,8) (-7,-3) 16.2788206 0 (-46,-21) 58.66856058 0 76 8 6 (5,8) (-6,17) 14.2126704 0.015625 (-23,-18) 38.20994635 0

27 3 7 (-7,-6) (-7,-3) 3 0 (14,-17) 23.70653918 0.03125 77 8 7 (-7,-6) (-9,-6) 2 0 (-2,-33) 27.45906044 0.015625

28 3 8 (-6,7) (-8,5) 2.828427125 0.015625 (-46,-21) 48.82622246 0 78 8 8 (-6,7) (-9,-6) 13.34166406 0.03125 (-23,-18) 30.23243292 0

29 3 9 (-4,0) (-7,-3) 4.242640687 0 (-46,-21) 46.95742753 0.03125 79 8 9 (-4,0) (-9,12) 13 0 (-2,-33) 33.06055051 0.015625

30 3 10 (5,9) (-7,-3) 16.97056275 0.015625 (-46,-21) 59.16924877 0 80 8 10 (5,9) (-6,17) 13.60147051 0.03125 (-23,-18) 38.89730068 0.015625

31 4 1 (2,-7) (14,-17) 15.62049935 0.015625 (18,-35) 32.24903099 0 81 9 1 (2,-7) (-9,-23) 19.41648784 0 (-2,-33) 26.30589288 0.015625

32 4 2 (-9,8) (14,-17) 33.9705755 0.03125 (-7,-14) 22.09072203 0.03125 82 9 2 (-9,8) (-23,-18) 29.52964612 0 (-23,-18) 29.52964612 0.03125

33 4 3 (0,-5) (14,-17) 18.43908891 0 (18,-35) 34.98571137 0 83 9 3 (0,-5) (-9,-23) 20.1246118 0 (-2,-33) 28.0713377 0

34 4 4 (9,1) (14,-17) 18.68154169 0.03125 (-7,-14) 21.9317122 0.03125 84 9 4 (9,1) (-9,6) 18.68154169 0.015625 (10,-14) 15.03329638 0.03125

35 4 5 (2,-4) (14,-17) 17.69180601 0.015625 (18,-35) 34.88552709 0.03125 85 9 5 (2,-4) (-9,-23) 21.9544984 0 (-2,-33) 29.27456234 0

36 4 6 (5,8) (14,-17) 26.57066051 0.03125 (-7,-14) 25.05992817 0.03125 86 9 6 (5,8) (-9,6) 14.14213562 0.015625 (-23,-18) 38.20994635 0.03125

37 4 7 (-7,-6) (14,-17) 23.70653918 0 (18,-35) 38.28837944 0.03125 87 9 7 (-7,-6) (-9,-23) 17.11724277 0 (-2,-33) 27.45906044 0

38 4 8 (-6,7) (14,-17) 31.2409987 0.015625 (-7,-14) 21.02379604 0.03125 88 9 8 (-6,7) (-9,-23) 30.14962686 0.03125 (-23,-18) 30.23243292 0.046875

39 4 9 (-4,0) (14,-17) 24.75883681 0 (18,-35) 41.34005322 0 89 9 9 (-4,0) (-9,-23) 23.53720459 0 (-2,-33) 33.06055051 0

40 4 10 (5,9) (14,-17) 27.51363298 0.015625 (-7,-14) 25.94224354 0.03125 90 9 10 (5,9) (-9,6) 14.31782106 0.015625 (-23,-18) 38.89730068 0.03125

41 5 1 (2,-7) (-7,-14) 11.40175425 0.015625 (18,-35) 32.24903099 0 91 10 1 (2,-7) (-9,-23) 19.41648784 0.03125 (14,-37) 32.31098884 0.03125

42 5 2 (-9,8) (-7,-14) 22.09072203 0.03125 (-7,-14) 22.09072203 0.0625 92 10 2 (-9,8) (-23,-18) 29.52964612 0 (-38,-12) 35.22782991 0

43 5 3 (0,-5) (-7,-14) 11.40175425 0.015625 (18,-35) 34.98571137 0 93 10 3 (0,-5) (-9,-23) 20.1246118 0 (14,-37) 34.92849839 0.03125

44 5 4 (9,1) (3,24) 23.76972865 0.015625 (-7,-14) 21.9317122 0.03125 94 10 4 (9,1) (-9,6) 18.68154169 0.015625 (-3,-5) 13.41640786 0

45 5 5 (2,-4) (-7,-14) 13.45362405 0.015625 (18,-35) 34.88552709 0 95 10 5 (2,-4) (-9,-23) 21.9544984 0 (-3,-5) 5.099019514 0.03125

46 5 6 (5,8) (3,24) 16.1245155 0.015625 (-7,-14) 25.05992817 0.015625 96 10 6 (5,8) (-9,6) 14.14213562 0.015625 (-3,-5) 15.26433752 0.015625

47 5 7 (-7,-6) (-7,-14) 8 0 (18,-35) 38.28837944 0 97 10 7 (-7,-6) (-9,-23) 17.11724277 0 (14,-37) 37.44329045 0.03125

48 5 8 (-6,7) (-7,-14) 21.02379604 0.03125 (-7,-14) 21.02379604 0.03125 98 10 8 (-6,7) (-9,-23) 30.14962686 0.015625 (-38,-12) 37.21558813 0

49 5 9 (-4,0) (-7,-14) 14.31782106 0.015625 (18,-35) 41.34005322 0.03125 99 10 9 (-4,0) (-9,-23) 23.53720459 0 (-3,-5) 5.099019514 0.015625

50 5 10 (5,9) (3,24) 15.13274595 0.015625 (-7,-14) 25.94224354 0.046875 100 10 10 (5,9) (-9,6) 14.31782106 0.015625 (-3,-5) 16.1245155 0.03125

Polar Quad Tree (100)Polar Quad Tree (100)Polar Split Tree (100) Polar Split Tree (100)



 

Journal of Information Systems and Telecommunication, Vol. 6, No. 3, July-September 2018 163 

 
Fig. 15. Comparing PST and PQT in terms of time and distance for 200 input points 

 
Fig. 16. Comparing PST and PQT in terms of time and distance for 500 input points 

Row# DataSet# QuerySet# QueryPoint 1NN Distance Time(ns) 1NN Distance Time(ns) Row# DataSet# QuerySet# QueryPoint 1NN Distance Time(ns) 1NN Distance Time(ns)

1 1 1 (2,-7) (0,-11) 4.472135955 0.015625 (6,-43) 36.22154055 0.03125 51 6 1 (2,-7) (16,-14) 15.65247584 0.015625 (16,-14) 15.65247584 0.03125

2 1 2 (-9,8) (0,-11) 21.02379604 0 (-29,-10) 26.90724809 0 52 6 2 (-9,8) (16,-14) 33.30165161 0.015625 (-49,-11) 44.28317965 0.03125

3 1 3 (0,-5) (0,-11) 6 0.015625 (6,-43) 38.47076812 0.046875 53 6 3 (0,-5) (16,-14) 18.35755975 0 (16,-14) 18.35755975 0.03125

4 1 4 (9,1) (-4,6) 13.92838828 0 (-29,-10) 39.56008089 0 54 6 4 (9,1) (16,-14) 16.55294536 0.015625 (-49,-11) 59.22837158 0.03125

5 1 5 (2,-4) (0,-11) 7.280109889 0.015625 (6,-43) 39.20459157 0.046875 55 6 5 (2,-4) (16,-14) 17.20465053 0.015625 (16,-14) 17.20465053 0.03125

6 1 6 (5,8) (0,-11) 19.6468827 0 (-29,-10) 38.47076812 0 56 6 6 (5,8) (-12,15) 18.38477631 0 (-49,-11) 57.24508713 0

7 1 7 (-7,-6) (0,-11) 8.602325267 0.015625 (6,-43) 39.2173431 0.03125 57 6 7 (-7,-6) (16,-14) 24.35159132 0.015625 (16,-14) 24.35159132 0.03125

8 1 8 (-6,7) (0,-11) 18.97366596 0.015625 (-29,-10) 28.60069929 0 58 6 8 (-6,7) (16,-14) 30.41381265 0 (-49,-11) 46.61544808 0

9 1 9 (-4,0) (0,-11) 11.70469991 0 (-29,-10) 26.92582404 0 59 6 9 (-4,0) (16,-14) 24.41311123 0.015625 (-49,-11) 46.32493929 0.03125

10 1 10 (5,9) (0,-11) 20.61552813 0 (-29,-10) 38.94868419 0 60 6 10 (5,9) (-12,15) 18.02775638 0.015625 (-49,-11) 57.5847202 0

11 2 1 (2,-7) (-5,-15) 10.63014581 0 (9,-40) 33.73425559 0 61 7 1 (2,-7) (16,-14) 15.65247584 0.015625 (30,-45) 47.20169488 0.015625

12 2 2 (-9,8) (-5,-15) 23.34523506 0.015625 (-74,-27) 73.8241153 0.03125 62 7 2 (-9,8) (16,-14) 33.30165161 0.03125 (-51,-2) 43.17406629 0

13 2 3 (0,-5) (-5,-15) 11.18033989 0 (9,-40) 36.138622 0.046875 63 7 3 (0,-5) (16,-14) 18.35755975 0.015625 (30,-45) 50 0.03125

14 2 4 (9,1) (-5,-15) 21.26029163 0 (-74,-27) 87.59566199 0 64 7 4 (9,1) (16,-14) 16.55294536 0.03125 (30,-45) 50.56678752 0

15 2 5 (2,-4) (-5,-15) 13.03840481 0.03125 (9,-40) 36.67424164 0.046875 65 7 5 (2,-4) (16,-14) 17.20465053 0.015625 (30,-45) 49.64876635 0.03125

16 2 6 (5,8) (-17,15) 23.08679276 0.015625 (-74,-27) 86.40601831 0 66 7 6 (5,8) (-12,15) 18.38477631 0.015625 (-51,-2) 56.88585061 0

17 2 7 (-7,-6) (-5,-15) 9.219544457 0.015625 (9,-40) 37.57658846 0.03125 67 7 7 (-7,-6) (16,-14) 24.35159132 0 (30,-45) 53.75872022 0.03125

18 2 8 (-6,7) (-5,-15) 22.02271555 0.015625 (-74,-27) 76.02631123 0 68 7 8 (-6,7) (16,-14) 30.41381265 0.015625 (-51,-2) 45.89117562 0

19 2 9 (-4,0) (-5,-15) 15.03329638 0 (-74,-27) 75.02666193 0 69 7 9 (-4,0) (16,-14) 24.41311123 0.015625 (30,-45) 56.40035461 0.046875

20 2 10 (5,9) (-17,15) 22.8035085 0 (-74,-27) 86.81589716 0.015625 70 7 10 (5,9) (-12,15) 18.02775638 0 (-51,-2) 57.07013229 0

21 3 1 (2,-7) (-14,-27) 25.61249695 0.046875 (9,-40) 33.73425559 0 71 8 1 (2,-7) (-16,-33) 31.6227766 0.015625 (1,-15) 8.062257748 0.03125

22 3 2 (-9,8) (-14,-27) 35.35533906 0 (-74,-27) 73.8241153 0.015625 72 8 2 (-9,8) (-16,-33) 41.59326869 0 (-92,-18) 86.97700846 0

23 3 3 (0,-5) (-14,-27) 26.07680962 0 (9,-40) 36.138622 0 73 8 3 (0,-5) (-16,-33) 32.24903099 0 (1,-15) 10.04987562 0.03125

24 3 4 (9,1) (9,-40) 41 0.03125 (-74,-27) 87.59566199 0.03125 74 8 4 (9,1) (-16,-33) 42.20189569 0.03125 (-42,-29) 59.16924877 0

25 3 5 (2,-4) (-14,-27) 28.01785145 0 (9,-40) 36.67424164 0 75 8 5 (2,-4) (-16,-33) 34.13209633 0.03125 (1,-15) 11.04536102 0.046875

26 3 6 (5,8) (-22,32) 36.12478374 0.03125 (-74,-27) 86.40601831 0 76 8 6 (5,8) (-42,5) 47.09564736 0.015625 (-92,-18) 100.4241007 0

27 3 7 (-7,-6) (-14,-27) 22.13594362 0 (9,-40) 37.57658846 0 77 8 7 (-7,-6) (-16,-33) 28.46049894 0 (1,-15) 12.04159458 0.03125

28 3 8 (-6,7) (-14,-27) 34.92849839 0 (-74,-27) 76.02631123 0 78 8 8 (-6,7) (-16,-33) 41.23105626 0.015625 (-92,-18) 89.56003573 0

29 3 9 (-4,0) (-14,-27) 28.7923601 0 (-74,-27) 75.02666193 0.03125 79 8 9 (-4,0) (-16,-33) 35.11409973 0 (-92,-18) 89.82204629 0

30 3 10 (5,9) (-22,32) 35.4682957 0.03125 (-74,-27) 86.81589716 0 80 8 10 (5,9) (-42,5) 47.16990566 0.015625 (-92,-18) 100.6876358 0

31 4 1 (2,-7) (-14,-27) 25.61249695 0 (13,-28) 23.70653918 0 81 9 1 (2,-7) (1,-15) 8.062257748 0.03125 (1,-15) 8.062257748 0.046875

32 4 2 (-9,8) (-14,-27) 35.35533906 0 (-38,5) 29.15475947 0 82 9 2 (-9,8) (1,-15) 25.07987241 0 (-92,-18) 86.97700846 0

33 4 3 (0,-5) (-14,-27) 26.07680962 0.015625 (13,-28) 26.41968963 0 83 9 3 (0,-5) (1,-15) 10.04987562 0 (1,-15) 10.04987562 0.03125

34 4 4 (9,1) (9,-40) 41 0.03125 (-38,5) 47.16990566 0 84 9 4 (9,1) (1,11) 12.80624847 0.046875 (-42,-29) 59.16924877 0.03125

35 4 5 (2,-4) (-14,-27) 28.01785145 0.046875 (13,-28) 26.40075756 0.03125 85 9 5 (2,-4) (1,-15) 11.04536102 0 (1,-15) 11.04536102 0.03125

36 4 6 (5,8) (-22,32) 36.12478374 0.015625 (-38,5) 43.10452412 0 86 9 6 (5,8) (1,-15) 23.34523506 0 (-92,-18) 100.4241007 0.03125

37 4 7 (-7,-6) (-14,-27) 22.13594362 0 (-2,-32) 26.47640459 0.03125 87 9 7 (-7,-6) (1,-15) 12.04159458 0.015625 (1,-15) 12.04159458 0

38 4 8 (-6,7) (-14,-27) 34.92849839 0 (-38,5) 32.06243908 0 88 9 8 (-6,7) (1,-15) 23.08679276 0.015625 (-92,-18) 89.56003573 0.015625

39 4 9 (-4,0) (-14,-27) 28.7923601 0 (-2,-32) 32.06243908 0.015625 89 9 9 (-4,0) (1,-15) 15.8113883 0 (-92,-18) 89.82204629 0

40 4 10 (5,9) (-22,32) 35.4682957 0.03125 (-38,5) 43.18564576 0 90 9 10 (5,9) (1,-15) 24.33105012 0.015625 (-92,-18) 100.6876358 0.03125

41 5 1 (2,-7) (-2,-32) 25.3179778 0.015625 (16,-14) 15.65247584 0.03125 91 10 1 (2,-7) (1,-15) 8.062257748 0 (9,-16) 11.40175425 0.03125

42 5 2 (-9,8) (-9,1) 7 0 (-49,-11) 44.28317965 0 92 10 2 (-9,8) (1,-15) 25.07987241 0.03125 (-41,-49) 65.36818798 0.03125

43 5 3 (0,-5) (-2,-32) 27.07397274 0.03125 (16,-14) 18.35755975 0.03125 93 10 3 (0,-5) (1,-15) 10.04987562 0.015625 (9,-16) 14.2126704 0

44 5 4 (9,1) (-2,-32) 34.78505426 0.03125 (-49,-11) 59.22837158 0 94 10 4 (9,1) (1,11) 12.80624847 0.046875 (9,-16) 17 0.03125

45 5 5 (2,-4) (-2,-32) 28.28427125 0.015625 (16,-14) 17.20465053 0.03125 95 10 5 (2,-4) (1,-15) 11.04536102 0 (9,-16) 13.89244399 0.015625

46 5 6 (5,8) (-2,-32) 40.60788101 0.015625 (-49,-11) 57.24508713 0.03125 96 10 6 (5,8) (1,-15) 23.34523506 0.015625 (-41,-49) 73.24616031 0.03125

47 5 7 (-7,-6) (-2,-32) 26.47640459 0.015625 (16,-14) 24.35159132 0.03125 97 10 7 (-7,-6) (1,-15) 12.04159458 0.015625 (9,-16) 18.86796226 0.015625

48 5 8 (-6,7) (-2,-32) 39.20459157 0.015625 (-49,-11) 46.61544808 0 98 10 8 (-6,7) (1,-15) 23.08679276 0 (-41,-49) 66.03786792 0.015625

49 5 9 (-4,0) (-2,-32) 32.06243908 0.015625 (-49,-11) 46.32493929 0.015625 99 10 9 (-4,0) (1,-15) 15.8113883 0.03125 (9,-16) 20.61552813 0

50 5 10 (5,9) (-2,-32) 41.59326869 0.015625 (-49,-11) 57.5847202 0.03125 100 10 10 (5,9) (1,-15) 24.33105012 0 (-41,-49) 74.02702209 0.03125

Polar Quad Tree (200)Polar Quad Tree (200)Polar Split Tree (200) Polar Split Tree (200)

Row# DataSet# QuerySet# QueryPoint 1NN Distance Time(ns) 1NN Distance Time(ns) Row# DataSet# QuerySet# QueryPoint 1NN Distance Time(ns) 1NN Distance Time(ns)

1 1 1 (2,-7) (-48,3) 50.99019514 0.03125 (-63,-12) 65.19202405 0.03125 51 6 1 (2,-7) (1,-8) 1.414213562 0.015625 (21,-70) 65.80273551 0

2 1 2 (-9,8) (-48,3) 39.3192065 0.03125 (-63,-12) 57.5847202 0 52 6 2 (-9,8) (1,-8) 18.86796226 0.015625 (-58,-49) 75.16648189 0.03125

3 1 3 (0,-5) (-48,3) 48.66210024 0 (-63,-12) 63.38769597 0 53 6 3 (0,-5) (1,-8) 3.16227766 0.015625 (-58,-49) 72.80109889 0.03125

4 1 4 (9,1) (-23,50) 58.52349955 0.046875 (-63,-12) 73.1641989 0.0625 54 6 4 (9,1) (1,-8) 12.04159458 0.015625 (-58,-49) 83.60023923 0.03125

5 1 5 (2,-4) (-48,3) 50.48762225 0.015625 (-63,-12) 65.49045732 0 55 6 5 (2,-4) (1,-8) 4.123105626 0.015625 (-58,-49) 75 0

6 1 6 (5,8) (-48,3) 53.23532662 0.015625 (-63,-12) 70.88018059 0 56 6 6 (5,8) (1,-8) 16.4924225 0.03125 (-58,-49) 84.95881355 0.03125

7 1 7 (-7,-6) (-48,3) 41.97618372 0 (-63,-12) 56.32051136 0 57 6 7 (-7,-6) (1,-8) 8.246211251 0 (21,-70) 69.85699679 0.03125

8 1 8 (-6,7) (-48,3) 42.19004622 0 (-63,-12) 60.08327554 0 58 6 8 (-6,7) (1,-8) 16.55294536 0.015625 (-58,-49) 76.4198927 0.03125

9 1 9 (-4,0) (-48,3) 44.10215414 0 (-63,-12) 60.20797289 0 59 6 9 (-4,0) (1,-8) 9.433981132 0.015625 (-58,-49) 72.9177619 0.015625

10 1 10 (5,9) (-48,3) 53.33854141 0.015625 (-63,-12) 71.16881339 0 60 6 10 (5,9) (1,-8) 17.4642492 0.03125 (-58,-49) 85.63293759 0

11 2 1 (2,-7) (-63,-12) 65.19202405 0 (-4,-62) 55.32630477 0.03125 61 7 1 (2,-7) (17,2) 17.49285568 0.03125 (-102,-15) 104.3072385 0

12 2 2 (-9,8) (-63,-12) 57.5847202 0 (-4,-62) 70.17834424 0 62 7 2 (-9,8) (17,2) 26.68332813 0 (-102,-15) 95.8018789 0

13 2 3 (0,-5) (-63,-12) 63.38769597 0.03125 (-4,-62) 57.14017851 0 63 7 3 (0,-5) (17,2) 18.38477631 0 (-102,-15) 102.4890238 0.03125

14 2 4 (9,1) (-63,-12) 73.1641989 0 (-4,-62) 64.32728814 0.03125 64 7 4 (9,1) (17,2) 8.062257748 0.046875 (-102,-15) 112.1472247 0.015625

15 2 5 (2,-4) (-63,-12) 65.49045732 0 (-4,-62) 58.30951895 0 65 7 5 (2,-4) (17,2) 16.15549442 0.015625 (-102,-15) 104.5801128 0

16 2 6 (5,8) (-63,-12) 70.88018059 0 (-4,-62) 70.57619995 0 66 7 6 (5,8) (17,2) 13.41640786 0.015625 (-102,-15) 109.4440496 0

17 2 7 (-7,-6) (-63,-12) 56.32051136 0 (-4,-62) 56.08029957 0 67 7 7 (-7,-6) (17,2) 25.29822128 0.03125 (-102,-15) 95.4253635 0.046875

18 2 8 (-6,7) (-63,-12) 60.08327554 0 (-4,-62) 69.02897942 0 68 7 8 (-6,7) (17,2) 23.53720459 0.015625 (-102,-15) 98.48857802 0.03125

19 2 9 (-4,0) (-63,-12) 60.20797289 0 (-4,-62) 62 0 69 7 9 (-4,0) (17,2) 21.09502311 0 (-102,-15) 99.14131329 0.03125

20 2 10 (5,9) (-63,-12) 71.16881339 0 (-4,-62) 71.56814934 0 70 7 10 (5,9) (17,2) 13.89244399 0.015625 (-102,-15) 109.658561 0

21 3 1 (2,-7) (-48,-60) 72.86288493 0.015625 (-11,-25) 22.20360331 0.03125 71 8 1 (2,-7) (-24,-39) 41.23105626 0.015625 (-19,-38) 37.44329045 0

22 3 2 (-9,8) (-48,-60) 78.39005039 0.015625 (-11,-25) 33.06055051 0 72 8 2 (-9,8) (-24,-39) 49.33558553 0.015625 (-19,-38) 47.07440918 0

23 3 3 (0,-5) (-48,-60) 73 0 (-11,-25) 22.82542442 0.015625 73 8 3 (0,-5) (-24,-39) 41.61730409 0.015625 (-19,-38) 38.07886553 0

24 3 4 (9,1) (-48,-60) 83.48652586 0.015625 (-11,-25) 32.80243893 0.046875 74 8 4 (9,1) (-24,-39) 51.85556865 0.015625 (-19,-38) 48.01041554 0.03125

25 3 5 (2,-4) (-48,-60) 75.07329752 0.015625 (-11,-25) 24.69817807 0.03125 75 8 5 (2,-4) (-24,-39) 43.60045871 0.015625 (-19,-38) 39.96248241 0.03125

26 3 6 (5,8) (-48,-60) 86.21484791 0 (-11,-25) 36.67424164 0.03125 76 8 6 (5,8) (-24,-39) 55.22680509 0.03125 (-19,-38) 51.88448708 0

27 3 7 (-7,-6) (-48,-60) 67.80117993 0.015625 (-11,-25) 19.41648784 0.03125 77 8 7 (-7,-6) (-24,-39) 37.12142239 0.015625 (-19,-38) 34.17601498 0

28 3 8 (-6,7) (-48,-60) 79.07591289 0.015625 (-11,-25) 32.38826948 0 78 8 8 (-6,7) (-24,-39) 49.39635614 0.015625 (-19,-38) 46.84015371 0

29 3 9 (-4,0) (-48,-60) 74.40430095 0.015625 (-11,-25) 25.96150997 0.03125 79 8 9 (-4,0) (-24,-39) 43.829214 0.015625 (-19,-38) 40.85339643 0.015625

30 3 10 (5,9) (-48,-60) 87.00574694 0.015625 (-11,-25) 37.57658846 0 80 8 10 (5,9) (-24,-39) 56.08029957 0.015625 (-19,-38) 52.77309921 0.015625

31 4 1 (2,-7) (-11,-25) 22.20360331 0.015625 (24,-5) 22.09072203 0.03125 81 9 1 (2,-7) (5,-26) 19.23538406 0.015625 (8,-52) 45.39823785 0

32 4 2 (-9,8) (-11,-25) 33.06055051 0.015625 (24,-5) 35.4682957 0.03125 82 9 2 (-9,8) (5,-26) 36.76955262 0.015625 (-67,-15) 62.39390996 0

33 4 3 (0,-5) (-11,-25) 22.82542442 0 (24,-5) 24 0.015625 83 9 3 (0,-5) (5,-26) 21.58703314 0.015625 (-67,-15) 67.74215822 0

34 4 4 (9,1) (-22,33) 44.55333882 0 (24,-5) 16.15549442 0 84 9 4 (9,1) (-32,35) 53.26349594 0.015625 (-67,-15) 77.66595136 0.03125

35 4 5 (2,-4) (-11,-25) 24.69817807 0 (24,-5) 22.02271555 0.03125 85 9 5 (2,-4) (5,-26) 22.20360331 0.015625 (-67,-15) 69.87131028 0.03125

36 4 6 (5,8) (-22,33) 36.79673899 0.015625 (24,-5) 23.02172887 0.046875 86 9 6 (5,8) (-32,35) 45.80392996 0.015625 (-67,-15) 75.58438992 0.046875

37 4 7 (-7,-6) (-11,-25) 19.41648784 0.015625 (24,-5) 31.01612484 0.03125 87 9 7 (-7,-6) (5,-26) 23.32380758 0.015625 (8,-52) 48.38388161 0

38 4 8 (-6,7) (-11,-25) 32.38826948 0.015625 (24,-5) 32.31098884 0.03125 88 9 8 (-6,7) (5,-26) 34.78505426 0.015625 (-67,-15) 64.84597135 0

39 4 9 (-4,0) (-11,-25) 25.96150997 0.015625 (24,-5) 28.44292531 0.03125 89 9 9 (-4,0) (5,-26) 27.51363298 0 (-67,-15) 64.76109943 0

40 4 10 (5,9) (-22,33) 36.12478374 0 (24,-5) 23.60084744 0.03125 90 9 10 (5,9) (-32,35) 45.22167622 0.015625 (-67,-15) 75.89466384 0.03125

41 5 1 (2,-7) (24,-5) 22.09072203 0 (-16,-18) 21.09502311 0 91 10 1 (2,-7) (25,-22) 27.45906044 0 (-121,-43) 128.1600562 0

42 5 2 (-9,8) (-43,11) 34.13209633 0.046875 (-16,-18) 26.92582404 0 92 10 2 (-9,8) (25,-22) 45.3431362 0.046875 (-121,-43) 123.0650235 0

43 5 3 (0,-5) (24,-5) 24 0.015625 (-16,-18) 20.61552813 0.03125 93 10 3 (0,-5) (25,-22) 30.23243292 0 (-121,-43) 126.8266534 0

44 5 4 (9,1) (24,-5) 16.15549442 0.015625 (-16,-18) 31.40063694 0.03125 94 10 4 (9,1) (25,-22) 28.01785145 0 (-121,-43) 137.2443077 0

45 5 5 (2,-4) (24,-5) 22.02271555 0.015625 (-16,-18) 22.8035085 0.015625 95 10 5 (2,-4) (25,-22) 29.20616373 0 (-121,-43) 129.034879 0

46 5 6 (5,8) (24,-5) 23.02172887 0.015625 (-16,-18) 33.42154993 0.015625 96 10 6 (5,8) (25,-22) 36.05551275 0 (-121,-43) 135.9301291 0.03125

47 5 7 (-7,-6) (24,-5) 31.01612484 0.015625 (-16,-18) 15 0.03125 97 10 7 (-7,-6) (25,-22) 35.77708764 0.03125 (-121,-43) 119.8540779 0.03125

48 5 8 (-6,7) (24,-5) 32.31098884 0.015625 (-16,-18) 26.92582404 0.03125 98 10 8 (-6,7) (25,-22) 42.44997055 0 (-121,-43) 125.399362 0

49 5 9 (-4,0) (24,-5) 28.44292531 0.015625 (-16,-18) 21.63330765 0.015625 99 10 9 (-4,0) (25,-22) 36.40054945 0.015625 (-121,-43) 124.6515142 0

50 5 10 (5,9) (24,-5) 23.60084744 0 (-16,-18) 34.20526275 0 100 10 10 (5,9) (25,-22) 36.89173349 0 (-121,-43) 136.3084737 0

Polar Quad Tree (500)Polar Quad Tree (500)Polar Split Tree (500) Polar Split Tree (500)



 

Farzad Bayat and Zahra Nilforoushan, Polar Split Tree as a Search Tool in Telecommunication 

 

164 

 
Fig. 17. Comparing PST and PQT in terms of time and distance for 1000 input points 

 

Since we traverse from top to down in the polar split 
tree, we have at most logn levels. Thus the time 
complexity of this code is O(logn). If we add the 
preprocessing steps, the total complexity is O(nlogn). 

7. Evaluation of the Proposed Method 

‎Using Matlab programming language 2015b‎, ‎simulation 
of this algorithm has been done in a machine with Windows 
10 Operating System‎ with ‎CPU‎ ‎Intel core i5 2.5 
GHZ‎, ‎RAM:6GB‎. The input contains random coordinates 
between‎ -‎1000 and 1000 in a 2-dimensional plane. In this 
paper‎, ‎searching time and the distance to the nearest 
neighbor for polar quad tree and polar split tree are 
compared‎. ‎The number of random query points change from 
100 to 1000. Four types of input with the number of points of 
100‎, ‎200, 500 and 1000 are tested. This test has been done 
for 10 types of random input and each random input has 
been repeated 10 times and for each random input‎, ‎one 
random query point is chosen and the nearest neighbor to the 
query point is calculated for both trees‎. ‎The results of the 
distance and time comparison for both algorithms are 
presented in the following tables ‎of figures 14, 15, 16 and 17‎.  

‎The graph of comparing two PST and PQT algorithms in 
terms of time and distance is in shown in figures ‎18, ‎19 ‎and ‎20‎.  

 
 Fig. 18. Searching Time and Distance to the Nearest Neighbor for PST and PQT 

 
Fig. 19. Comparing PQT and PST in terms of searching Time NN1  

‎  
Fig. 20. Comparing PQT and PST in terms of Distance to NN1  

Row# DataSet# QuerySet# QueryPoint 1NN Distance Time(ns) 1NN Distance Time(ns) Row# DataSet# QuerySet# QueryPoint 1NN Distance Time(ns) 1NN Distance Time(ns)

1 1 1 (2,-7) (10,-28) 22.47220505 0.046875 (18,-74) 68.8839604 0.046875 51 6 1 (2,-7) (-11,-6) 13.03840481 0.015625 (38,-140) 137.7860661 0.03125

2 1 2 (-9,8) (10,-28) 40.70626487 0 (-147,4) 138.0579588 0 52 6 2 (-9,8) (-11,-6) 14.14213562 0 (-192,-53) 192.8989373 0.015625

3 1 3 (0,-5) (10,-28) 25.07987241 0.015625 (18,-74) 71.30918594 0.03125 53 6 3 (0,-5) (-11,-6) 11.04536102 0 (38,-140) 140.2462121 0.03125

4 1 4 (9,1) (10,-28) 29.01723626 0 (-147,4) 156.0288435 0 54 6 4 (9,1) (-11,-6) 21.1896201 0 (-192,-53) 208.1273649 0.03125

5 1 5 (2,-4) (10,-28) 25.29822128 0 (18,-74) 71.80529228 0.03125 55 6 5 (2,-4) (-11,-6) 13.15294644 0.015625 (38,-140) 140.6840432 0.015625

6 1 6 (5,8) (10,-28) 36.34556369 0 (-147,4) 152.0526225 0.03125 56 6 6 (5,8) (-11,-6) 21.26029163 0 (-192,-53) 206.2280291 0.015625

7 1 7 (-7,-6) (10,-28) 27.80287755 0.03125 (18,-74) 72.44998275 0.03125 57 6 7 (-7,-6) (-11,-6) 4 0 (38,-140) 141.3541651 0.015625

8 1 8 (-6,7) (10,-28) 38.48376281 0.015625 (-147,4) 141.0319113 0 58 6 8 (-6,7) (-11,-6) 13.92838828 0 (-192,-53) 195.4379697 0

9 1 9 (-4,0) (10,-28) 31.30495168 0 (-147,4) 143.0559331 0.015625 59 6 9 (-4,0) (-11,-6) 9.219544457 0 (-192,-53) 195.3279294 0

10 1 10 (5,9) (10,-28) 37.33630941 0 (-147,4) 152.0822146 0 60 6 10 (5,9) (-11,-6) 21.9317122 0.015625 (-192,-53) 206.5260274 0.046875

11 2 1 (2,-7) (18,-23) 22.627417 0.046875 (21,-129) 123.4706443 0.015625 61 7 1 (2,-7) (-46,-104) 108.2266141 0.015625 (13,-180) 173.3493582 0.03125

12 2 2 (-9,8) (18,-23) 41.10960958 0.015625 (-213,-78) 221.3865398 0 62 7 2 (-9,8) (-46,-104) 117.9533806 0 (13,-180) 189.2828571 0

13 2 3 (0,-5) (18,-23) 25.45584412 0 (21,-129) 125.7656551 0.03125 63 7 3 (0,-5) (-46,-104) 109.1650127 0.03125 (13,-180) 175.4821928 0

14 2 4 (9,1) (18,-23) 25.63201124 0.015625 (21,-129) 130.5526714 0 64 7 4 (9,1) (-56,93) 112.6454615 0.03125 (13,-180) 181.0441935 0

15 2 5 (2,-4) (18,-23) 24.8394847 0.015625 (21,-129) 126.4357544 0 65 7 5 (2,-4) (-46,-104) 110.923397 0.03125 (13,-180) 176.343415 0

16 2 6 (5,8) (18,-23) 33.61547263 0.015625 (-213,-78) 234.3501654 0.015625 66 7 6 (5,8) (-56,93) 104.6231332 0.015625 (13,-180) 188.1701358 0

17 2 7 (-7,-6) (18,-23) 30.23243292 0.03125 (21,-129) 126.1467399 0 67 7 7 (-7,-6) (-46,-104) 105.4751155 0 (13,-180) 175.1456537 0.03125

18 2 8 (-6,7) (18,-23) 38.41874542 0.015625 (-213,-78) 223.7722056 0.03125 68 7 8 (-6,7) (-56,93) 99.47864092 0.015625 (13,-180) 187.9627623 0.03125

19 2 9 (-4,0) (18,-23) 31.82766093 0.03125 (21,-129) 131.4001522 0 69 7 9 (-4,0) (-56,93) 106.5504575 0 (13,-180) 180.8009956 0

20 2 10 (5,9) (18,-23) 34.53983208 0.015625 (-213,-78) 234.7189809 0 70 7 10 (5,9) (-56,93) 103.8123307 0.015625 (13,-180) 189.1692364 0

21 3 1 (2,-7) (-17,-57) 53.48831648 0.015625 (-100,-70) 119.8874472 0 71 8 1 (2,-7) (-32,-70) 71.58910532 0.03125 (47,-82) 87.46427842 0

22 3 2 (-9,8) (-64,-3) 56.08921465 0 (-100,-70) 119.8540779 0.03125 72 8 2 (-9,8) (-86,5) 77.0584194 0.015625 (-109,-39) 110.4943437 0

23 3 3 (0,-5) (-17,-57) 54.70831747 0 (-100,-70) 119.2686044 0 73 8 3 (0,-5) (-86,5) 86.57944329 0 (47,-82) 90.21086409 0.03125

24 3 4 (9,1) (-17,-57) 63.56099433 0 (-100,-70) 130.0845879 0 74 8 4 (9,1) (-32,-70) 81.98780397 0 (-109,-39) 124.595345 0.03125

25 3 5 (2,-4) (-17,-57) 56.30275304 0.015625 (-100,-70) 121.4907404 0 75 8 5 (2,-4) (-32,-70) 74.24284477 0 (47,-82) 90.04998612 0.03125

26 3 6 (5,8) (-17,-57) 68.62215386 0 (-100,-70) 130.8013761 0 76 8 6 (5,8) (-32,-70) 86.33075929 0.015625 (-109,-39) 123.3085561 0

27 3 7 (-7,-6) (-17,-57) 51.97114584 0 (-100,-70) 112.8937554 0 77 8 7 (-7,-6) (-86,5) 79.76214641 0 (47,-82) 93.23089617 0.03125

28 3 8 (-6,7) (-64,-3) 58.85575588 0.015625 (-100,-70) 121.5113163 0 78 8 8 (-6,7) (-86,5) 80.02499609 0.03125 (-109,-39) 112.8051417 0.03125

29 3 9 (-4,0) (-17,-57) 58.46366393 0.015625 (-100,-70) 118.8107739 0 79 8 9 (-4,0) (-86,5) 82.15229759 0.015625 (-109,-39) 112.0089282 0

30 3 10 (5,9) (-17,-57) 69.57010852 0.015625 (-100,-70) 131.4001522 0 80 8 10 (5,9) (-32,-70) 87.23531395 0 (-109,-39) 123.6931688 0

31 4 1 (2,-7) (11,-33) 27.51363298 0 (31,-43) 46.22769733 0 81 9 1 (2,-7) (-57,49) 81.34494453 0.046875 (34,-128) 125.1598977 0

32 4 2 (-9,8) (11,-33) 45.61797891 0.015625 (-137,-35) 135.0296264 0 82 9 2 (-9,8) (-57,49) 63.12685641 0 (1,-4) 15.62049935 0.015625

33 4 3 (0,-5) (11,-33) 30.08321791 0.03125 (-137,-35) 140.2462121 0.03125 83 9 3 (0,-5) (-57,49) 78.51751397 0 (1,-4) 1.414213562 0

34 4 4 (9,1) (11,-33) 34.05877273 0 (-137,-35) 150.3728699 0 84 9 4 (9,1) (-57,49) 81.60882305 0.015625 (1,-4) 9.433981132 0.015625

35 4 5 (2,-4) (11,-33) 30.3644529 0.015625 (-137,-35) 142.4148869 0 85 9 5 (2,-4) (-57,49) 79.30952024 0.015625 (1,-4) 1 0.015625

36 4 6 (5,8) (11,-33) 41.43669871 0 (-137,-35) 148.3677863 0 86 9 6 (5,8) (-57,49) 74.33034374 0.015625 (1,-4) 12.64911064 0

37 4 7 (-7,-6) (11,-33) 32.44996148 0.015625 (31,-43) 53.03772242 0 87 9 7 (-7,-6) (-57,49) 74.33034374 0.015625 (1,-4) 8.246211251 0.03125

38 4 8 (-6,7) (11,-33) 43.46262762 0 (-137,-35) 137.5681649 0 88 9 8 (-6,7) (-57,49) 66.06814664 0 (1,-4) 13.03840481 0.03125

39 4 9 (-4,0) (11,-33) 36.24913792 0.015625 (-137,-35) 137.5281789 0 89 9 9 (-4,0) (-57,49) 72.18032973 0 (1,-4) 6.403124237 0.03125

40 4 10 (5,9) (11,-33) 42.42640687 0.015625 (-137,-35) 148.6606875 0 90 9 10 (5,9) (-57,49) 73.78346698 0.015625 (1,-4) 13.60147051 0

41 5 1 (2,-7) (31,-43) 46.22769733 0.046875 (-11,-6) 13.03840481 0.015625 91 10 1 (2,-7) (-45,35) 63.03173804 0 (-152,-101) 180.4217282 0.03125

42 5 2 (-9,8) (31,-43) 64.81512169 0.015625 (-11,-6) 14.14213562 0 92 10 2 (-9,8) (-45,35) 45 0 (-256,-8) 247.5176761 0

43 5 3 (0,-5) (31,-43) 49.04079934 0.03125 (-11,-6) 11.04536102 0.03125 93 10 3 (0,-5) (-45,35) 60.20797289 0 (-152,-101) 179.7776404 0.03125

44 5 4 (9,1) (31,-43) 49.1934955 0.0625 (-11,-6) 21.1896201 0.015625 94 10 4 (9,1) (64,-25) 60.8358447 0.015625 (-152,-101) 190.5911855 0

45 5 5 (2,-4) (31,-43) 48.60041152 0.03125 (-11,-6) 13.15294644 0.015625 95 10 5 (2,-4) (-45,35) 61.07372594 0 (-152,-101) 182.0027472 0

46 5 6 (5,8) (31,-43) 57.24508713 0.03125 (-11,-6) 21.26029163 0.015625 96 10 6 (5,8) (-45,35) 56.82429058 0.015625 (-152,-101) 191.1282292 0.03125

47 5 7 (-7,-6) (31,-43) 53.03772242 0.046875 (-11,-6) 4 0 97 10 7 (-7,-6) (-45,35) 55.90169944 0 (-152,-101) 173.3493582 0.03125

48 5 8 (-6,7) (31,-43) 62.20128616 0.015625 (-11,-6) 13.92838828 0.03125 98 10 8 (-6,7) (-45,35) 48.01041554 0 (-256,-8) 250.4495957 0

49 5 9 (-4,0) (31,-43) 55.4436651 0.015625 (-11,-6) 9.219544457 0.03125 99 10 9 (-4,0) (-45,35) 53.90732789 0 (-152,-101) 179.1786818 0.03125

50 5 10 (5,9) (31,-43) 58.13776741 0.03125 (-11,-6) 21.9317122 0.03125 100 10 10 (5,9) (-45,35) 56.35601121 0.046875 (-152,-101) 191.7002869 0.03125

Polar Quad Tree (1000)Polar Quad Tree (1000)Polar Split Tree (1000) Polar Split Tree (1000)

DataSet Size Time(ns) Distance Time(ns) Distance

100 0.013438 17.2179489 0.017031 28.5644889

200 0.012969 23.7880872 0.01625 47.3654892

500 0.013125 38.9709372 0.014844 62.4753168

1000 0.013438 54.5585853 0.013125 122.750356

10000 0.026563 312.666854 0.045313 762.142584

Polar Quad TreePolar Split Tree



 

Journal of Information Systems and Telecommunication, Vol. 6, No. 3, July-September 2018 165 

8. Conclusion 

‎In this paper‎, ‎it is assumed that the input data have been 

distributed in a circle form, the smallest circle containing 

the input points is drawn and using the mentioned 

method‎, ‎the polar split tree is constructed‎. ‎As it was 

observed‎, ‎the results of the nearest neighbor search in terms 

of time and distance in polar split tree have been better than 

polar quad tree‎. ‎This matter indicates the optimality of the 

polar split tree in nearest neighbor search. ‎This method has 

several applications including transmitting radio and 

telecommunication waves form host stations to receivers 

and searching the receivers. ‎As in these areas we are 

dealing with circular shapes, it is better to use polar 

coordinate‎. ‎ ‎B y entering one newly query data using NN1, 

polar split tree for the set of input points enables us to 

detect which cell of the tree belongs to this point.  

Acknowledgment 

We acknowledge the contribution of Marzieh Nazari 

for the sincere help that went through the initial writing of 

the paper. We also appreciate the referees for many useful 

comments and suggestions. 

 

 

 

References 
[1] Robert Adams and Essex Christopher, Calculus: a 

complete course (Eighth ed.). Pearson Canada Inc., 2013.# 

[2] Pablo Alonso Gonzalez, Optimization of antenna coverage 

in telecommunication systems, AGH University of Science 

and Technology, 2018.# 

[3] ‎Mark de Berg‎, ‎Otfried Cheong‎, ‎Marc van Kreveld‎, ‎and 

Mark Overmars‎, Computational Geometry:‎ Algorithms and 

Applications.‎ ‎Springer‎, ‎‎pp. ‎309-312‎, 2008.# 

[4] Cristina Costa, Francesco G.B. De Natale and 

Fabrizio Granelli, Quality Evaluation and Nonuniform 

Compression of Geometrically Distorted Images Using the 

Quadtree Distortion Map, EURASIP Journal on Applied 

Signal Processing, pp. 1899–1911, 2004.# 

[5] Ameneh Eskandari‎, ‎Zahra Nilforoushan and javad 

ranjbar‎, ‎A Novel Method to Improve Query in Big‎‎

‎Databases Using a Geometric tree Base 

Algorithm: ‎International Journal of computer & 

Information‎‎‎Technologies‎, ‎5(1): 53-58‎, ‎2017‎.# 

[6] Clara Grima and Alberto Marquez, Computational 

Geometry on Surfaces: Performing Computational 

Geometry on the Cylinder, the Sphere, the Torus, and the 

Cone, Kluwer Academic Publishers, 2001.# 

[7] Anton Howard, Irl Bivens and Stephen Davis, Calculus 

(Seventh ed.). Anton Textbooks, Inc., 2002.# 

[8] Moritz von Looz, Christian L. Staudt, Henning 

Meyerhenke and Roman Prutkin, Fast generation of 

dynamic complex networks with underlying hyperbolic 

geometry, Karlsruhe Reports in Informatics, 2014.# 

[9] Nimrod Megiddo‎, ‎Linear-time algorithms for Linear 

programing in R‎‎and related problems‎ .: ‎SIAM Journal on 

Computing‎, ‎12(4)‎: ‎759-776,1983‎.# 

[10] Giri Narasimhan and Michiel Smid‎, ‎Geometric Spanner 

Networks.‎: ‎Cambridge University Press‎, ‎2007‎.# 

[11] Joseph O'Rourke, Computational Geometry in C, 

Cambridge University Press,1998.# 

[12] ‎Rina Panigrahy‎, An Improved ‎Algorithm Finding Nearest 

Neighbor Using kd-trees‎, Latin American Symposium on 

Theoretical Informatics, pp. 387--398, 2008.# 

[13] Sudhir Porwal, Quad tree-based level-of-details 

representation of digital Globe, Defence Science Journal, 

Vol. 63, No. 1, pp. 89-92, 2013.# 

[14] Franco P. Preparata and Michael Ian Shamos, Computational 

Geometry - An Introduction, Springer, 1985.# 

 

 

 

 

 

 

 

 
 

[15] Javad Ranjbar, Zahra Nilforoushan and Ameneh Eskandari, 

Improved Fingerprint Matching Speed in Large Databases 

Using Split Tree, 3rd National Conference on Distributed 

Computing and Big Data Processing, 2017.# 

[16] J. R. Sack and J. Urrutia, Handbook of Computational 

Geometry, Elsevier, 1999.# 

[17] Bahram Sadegh Bigham, Ali Mohades and Lidia Ortega, 

Dynamic Polar Diagram, Information Processing Letters, 

109.2, pp. 142-146, 2008.# 

[18] Hanan Samet, Foundations of Multidimensional and Metric 

Data Structures, Elsevier, 2006.# 

[19] S. Saric , Z. Bozanic and R. Svalina: Automation in 

Developing Technical Documentation of 

Telecommunication Networks, Promet- Traffic- Traffico, 

Vol. 16, No. 5, pp. 257-262, 2004.# 

[20] Ian Stewart and David Tall, Complex Analysis (the 

Hitchhiker's Guide to the Plane). Cambridge University 

Press, 1983.# 

[21] A. M. Sukhov and D. Yu. Chemodanov, The 

Neighborhoods Method and Virtual Polar coordinates in 

Wireless Sensor Networks, Network and Communication 

Technologies, Vol. 2, No. 1, pp. 19-27, 2013.# 

[22] Waldo Tobler and Zitan Chen, A Quad tree for Global 

Information Storage, Geographical Analysis, Volume18, 

Issue4, 1986.# 

[23] ‎https://www.coursera.org/learn/ml-clustering-and-

retrieval/lecture/6eTzw/nn-search-with-kd-rees ‎# 

 

 
Farzad Bayat received his B.Sc. degree in Software Engineering 
from Buali Sina University of Hamedan,Hamedan,Iran in 2016. He 
received the M.Sc. degree in Knowledge Engineering from 
Kharazmi University, Tehran,Iran, in 2019. His area research 
interests include Software Development like Android App, Web 
Site and etc. He studied and worked in CRM (Customer 
Relationship Management) from Microsoft for two years. 
 
Zahra Nilforoushan received her M.Sc. degree in Pure 
Mathematics (Algebraic Geometry) and Ph.D in Computer  
Science (Computational Geometry) from Amir kabir University of 
Technology, Tehran, Iran in 2003 and 2009 respectively. She 
served as a lecturer at Dept. of Computer Science, Faculty of 
Mathematical Sciences and Computer, Kharazmi University, 
Tehran, Iran from 2009 to 2011. Since 2012 she is with Dept. of 
Electrical and Computer Engineering, Faculty of Engineering at 
Kharazmi University as an Assistant Professor. Her research 
interests are Computational Geometry, Computer Graphics, 
Computer Vision, Analysis Algorithm and Robotics. 

 

https://www.amazon.com/Computational-Geometry-Applications-Mark-Berg/dp/3540779736/ref=pd_bxgy_14_2?_encoding=UTF8&pd_rd_i=3540779736&pd_rd_r=31e3396c-b5ab-11e8-8e51-357518f34f72&pd_rd_w=DFXXc&pd_rd_wg=9mjJ9&pf_rd_i=desktop-dp-sims&pf_rd_m=ATVPDKIKX0DER&pf_rd_p=6725dbd6-9917-451d-beba-16af7874e407&pf_rd_r=RGE8HZKPN6QNV7TZQEHF&pf_rd_s=desktop-dp-sims&pf_rd_t=40701&psc=1&refRID=RGE8HZKPN6QNV7TZQEHF
https://www.amazon.com/Joseph-ORourke/e/B001IQUOLK/ref=dp_byline_cont_book_1
http://www.cambridge.org/9780521640107
https://www.springer.com/gp/book/9780387961316
https://www.springer.com/gp/book/9780387961316
https://www.amazon.com/s/ref=dp_byline_sr_ebooks_1?ie=UTF8&text=J.+R.+Sack&search-alias=digital-text&field-author=J.+R.+Sack&sort=relevancerank
https://www.amazon.com/s/ref=dp_byline_sr_ebooks_2?ie=UTF8&text=J.+Urrutia&search-alias=digital-text&field-author=J.+Urrutia&sort=relevancerank
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Tobler%2C+Waldo
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Chen%2C+Zi-tan
https://onlinelibrary.wiley.com/toc/15384632/1986/18/4
https://onlinelibrary.wiley.com/toc/15384632/1986/18/4

