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Abstract  
To support high bisection bandwidth for communication intensive applications in the cloud computing environment, data 

center networks usually offer a wide variety of paths. However, optimal utilization of this facility has always been a critical 

challenge in a data center design. Flow-based mechanisms usually suffer from collision between elephant flows; while, 

packet-based mechanisms encounter packet re-ordering phenomenon. Both of these challenges lead to severe performance 

degradation in a data center network. To address these problems, in this paper, we propose an efficient mechanism for the 

flow scheduling problem in cloud data center networks. The proposed mechanism, on one hand, makes decisions per flow, 

thus preventing the necessity for rearrangement of packets. On the other hand, thanks do SDN technology and utilizing 

bidirectional search algorithm, our proposed method is able to distribute elephant flows across the entire network smoothly 

and with a high speed. Simulation results confirm the outperformance of our proposed method with the comparison of state-

of-the-art algorithms under different traffic patterns. In particular, compared to the second-best result, the proposed 

mechanism provides about 20% higher throughput for random traffic pattern. In addition, with regard to flow completion 

time, the percentage of improvement is 12% for random traffic pattern.  

 

Keywords: Cloud Computing; Data Center Networks; Flow Scheduling; Routing Algorithm; Load Balancing; 

Bidirectional Search. 

 

1- Introduction 

Over the past few years, several companies and 

organizations have shifted their services such as large scale 

computing, web search, online gaming, and social 

networking to cloud computing environment [1]. Recently, 

with the emergence of IoT-based applications and massive 

data processing, the demand for cloud resources has 

increased dramatically. In order to meet these needs, 

various data center networks are deployed around the 

world, including hundreds of servers and large amounts of 

traffic are exchanged between them. 

Today's data center networks often use multi-rooted tree 

topologies such as Fat-tree [2-4] and Clos [5, 6]. These 

topologies provide multiple paths at an equal cost between 

each pair of end hosts, and thus significantly increase 

bisection bandwidth. However, given the burstiness and 

unpredictable nature of the traffic matrix and the flow 

pattern generated by virtual machines on hosts, achieving 

load balancing in a data center network is not a trivial task. 

Over the past few years, network researchers and traffic 

engineers have proposed various algorithms and 

mechanisms to provide load balancing in cloud data center 

networks [7–17]. Although these efforts are valuable steps 

towards improving the efficiency of data center networks, 

there exist still some challenges and issues in this regard. 

The mechanisms that use per-packet approach to manage 

network traffic, although provide good load balancing 

across the network, but they are faced with the 

phenomenon of packet re-ordering. Packet re-ordering not 

only affects TCP throughput but also imposes significant 

computational overhead on hosts [12]. On the other hand, 

flow-based mechanisms usually suffer from the 
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phenomenon of collision between the elephant flows, 

which leads to network performance reduction. Therefore, 

the issue of load balancing in data center networks is still 

challenging and needs further research efforts [1]. 

In this paper, we aim to design an efficient flow-based 

mechanism to achieve load balancing in data center 

networks. Given the fact that most flows in data centers 

are only a few kilobytes in size (i.e., mice flows) and a 

very small percentage of them are large-sized flows (i.e., 

elephant flows), we take advantage of a hybrid mechanism 

for flow scheduling in a data center network. For this 

purpose, we use the distributed ECMP algorithm for mice 

flows, while a central controller is used for elephant flows. 

When an elephant flow is detected by a host, it sends the 

flow to the controller for routing the first packet. In the 

controller, based on the defined cost matrix, an optimal 

bidirectional search is performed on the network to find 

and select the best route for that flow. 

Our proposed mechanism has three major advantages. 

First, it prevents the packet re-ordering phenomenon; 

because it performs per flow. Second, since the controller 

is used only for elephant flows, it does not become a 

bottleneck. Third, because the central controller provides a 

macroscopic view of the network traffic, our algorithm is 

able to distribute the elephant flows smoothly across the 

network. We have compared our approach with various 

mechanisms such as Static [2], ECMP [18] and DiFS [19]. 

The results of the experiments clearly show the superiority 

of our algorithm in terms of delay, throughput and flow 

completion time in comparison with other mentioned 

approaches. 

The rest of the paper is organized as follows. In Section 

2, related works are reviewed. Background and problem 

definition are described in Section 3. The proposed 

mechanism is presented in Section 4. In Section 5, we 

describe the simulation and evaluate the performance of 

the proposed method. Finally, Section 6 concludes the 

paper. 

2- Related Works 

In general, flow scheduling algorithms are divided into 

two main categories [1]: distributed and centralized. On 

the other hand, in terms of how the flows are handled, they 

can be classified into three categories [1]: packet-based, 

flow-based and flowlet-based. Below, we review some of 

the most important works performed on flow scheduling in 

cloud data center networks.  

ECMP [18] is the most common routing algorithm for 

flow scheduling in data center networks. It is a distributed 

and flow-based algorithm. When a flow enters a switch for 

the first time, the ECMP performs the routing operation by 

applying the hash function to the header of the packet. 

Although the implementation of this algorithm is very 

simple, it does not differentiate between mice and elephant 

flows; and therefore, collisions between elephant flows is 

inevitable. 

DARD [4] is another flow-based distributed algorithm. 

In this algorithm, end-hosts are responsible for monitoring 

the status of network traffic. Based on the network 

feedback received from the probe packets, each host 

moves the flows from high-traffic routes to low-traffic 

routes. However, injecting a large number of probe 

packets into the network puts considerable overhead on it. 

In addition, since this algorithm is host-based, all hosts 

need to be upgraded, which imposes a lot of administrative 

costs. 

Cui et al. [14, 19] have recently proposed an adaptive 

distributed mechanism, called DiFS, for flow scheduling 

in data center networks with Fat-tree topology. They use 

ECMP to forward mice flows, while for scheduling the 

elephant flows each switch greedily distributes them to the 

output ports. In order to prevent over-utilized links, DiFS 

may change the path of some flows based on the 

collaboration between switches. Simulation results show 

that DiFS performs far better than ECMP. However, since 

this algorithm has no macroscopic view of the network, it 

has to transmit a large number of messages between the 

switches to provide load balancing. This, on the one hand, 

leads to overhead on the network, and on the other hand, 

as some flows change their direction, packets may need to 

be re-ordered. 

DRILL [20] is another distributed mechanism which is 

inspired by the idea of "the power of two random choices".  

In each switch and for each packet, this approach decides 

which output port to send the packet to, based on local 

information about the queue length. The port selection 

mechanism in DRILL is simple and easy to implement. 

However, due to the fact that DRILL operates on a per-

packet basis, packet out-of-ordering is inevitable. 

Some other works [2, 21, 22] use Static or deterministic 

routing to forward packets over the network. In Static 

routing, the path between each host pair is determined in 

advance and remains unchanged. Although in practice the 

implementation of such mechanism is very simple, it 

cannot well take advantage of the multi-path benefit 

provided by the topology of data center networks, and 

usually provides very low performance. 

Hedera [7] is a dynamic flow scheduling system in 

which mice flows are separated from elephant flows using 

a specified threshold value. By default, Hedera uses 

ECMP to transmit flows on the network. However, when a 
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large flow is detected, the system generates a demand 

matrix for active flows. Therefore, it proposes two 

schedulers “Global First Fit” and “Simulated Annealing” 

to send the flows. The results show that Hedera achieves a 

significant performance improvement compared to ECMP 

for the moderate cost. On the one hand, the demand 

estimation matrix in Hedera is only run once per 

scheduling period, which takes about 200 milliseconds for 

a data center network with 27,648 hosts and 250,000 large 

flows. On the other hand, the execution time of the 

scheduler is in order of tens of milliseconds. Putting these 

two points together, it can be seen that it takes several 

hundred milliseconds to find a suitable approximate path 

for guiding large flows in a data center network, which is a 

considerable time. In addition, given the drastic changes in 

traffic patterns in data centers, Hedera has to build demand 

matrixes over and over again in a short period of time, 

which imposes a significant overhead on the system. 

Wang et al. in [23] proposed an adaptive mechanism 

called Freeway for flow scheduling in data center 

networks. This mechanism partitions the paths between 

hosts into low latency and high throughput paths. It then 

transmits mice flows through low latency paths and 

elephant flows through high throughput paths. Although 

Freeway performs better than ECMP and Hedera, in 

practice it may leave much of the network’s capacity 

unused [1]. 

Based on the ant colony optimization algorithm, the 

authors of [16] proposed a centralized scheduling 

mechanism for transmitting the flows in data center 

networks. Their algorithm divides the elephant flows into k 

segments and sends them through k edge-disjoint paths. 

Since the flows are broken in this algorithm, the problem 

of re-ordering packets arises. 

Authors in [24] have modeled the elephant flow 

scheduling problem as a multi-knapsack problem and 

proposed a mechanism based on hybrid Genetic and 

Simulated Annealing algorithm to solve it. Simulation 

results confirm that their algorithm provides higher 

bisection bandwidth and lower latency in comparison with 

similar methods. However, since their approach is similar 

to Hedera, it has same drawbacks. 

3- Background 

The topologies proposed for data center networks over the 

past few years provide multiple paths between each pair of 

hosts [2, 5, 21, 25]. Although our proposed mechanism 

can be applicable to any topology, in this paper, we focus 

on the well-known and common Fat-tree topology [2]. In 

this section, we first briefly describe the Fat-tree topology. 

Then, we will focus on the characteristics of flows in data 

center networks. We then investigate the mechanisms for 

detection of mice flows and elephant flows. Finally, we 

illustrate the problem of collision of elephant flows in data 

center networks with a detailed example. 

3-1- Fat-tree topology 

Fat-tree is a hierarchical multi-root tree topology that 

contains three layers of switches called Top of Rack 

(ToR), aggregation, and core. In this topology, the 

switches are homogeneous and the degree of each switch 

is determined by the parameter n. Fat-tree consists of n 

pods, each pod having two layers and each layer has n/2 

switches that form a complete bipartite graph. Figure 1 

shows an example of a Fat-tree topology with 4-port 

switches (n = 4). 

 

Fig. 1 Fat-tree topology with 4-port switches 

 

In this work, we define the Fat-tree topology as a directed 

graph           where,   represents the switches and   

represents the links. Also, links that connect lower layer 

switches to higher layer switches are called uphill and 

links that connect higher layer switches to the lower layer 

switches are called downhill links. 

3-2- Flow properties in data center networks 

Each flow contains several packets that are chained 

together. In data center networks, if a flow contains a lot of 

packets, or it takes a long period of time, or its traffic is 

more than a threshold value, it is known as an elephant 

flow. On the other hand, flows with low information 

volumes or low number of packets are called mice flows 

[26]. In terms of number of flows in a data center network, 

typically more than 90% of them are mice, while only less 

than 10% of them are elephant flows. Nevertheless, on the 

other hand, more than 90% of the data volume belongs to 

the elephant flows and only 10% to the mouse flows [5]. 

This paradox highlights the importance of elephant flows. 

ToR

Aggregation

Core

Pod 1 Pod 4Pod 3Pod 2
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3-3- Mechanisms to detect Elephant and mice 

flows 

The mechanisms for detecting elephant flow from mice are 

divided into two main categories [27]: 

Detection by edge switches: In this case, edge switches are 

responsible for detecting elephant flows. Hedera [7] and 

DiFS [19] use this method. 

Detection by hosts: In this method, the detection of 

elephant from the mice flows is the responsibility of the 

host itself. Mahout [27] and DARD [4] are some of the 

algorithms that use this method. 

3-4- The problem of collision between elephant 

flows 

As previously mentioned in Section 2, DiFS is a greedy 

distributed mechanism for scheduling elephant flows in a 

data center network. In Fig. 2, suppose that hosts A and B 

produce 16 elephant flows in total, where the destination 

of 8 of these flows is host C or D (within the pod) while, 

other 8 flows are toward outside the pod. In switch SW1, 

DiFS distributes the flows quite evenly. But in the worst 

case, all of the eight flows that enter SW3 may be intra-pod 

flows. This situation leads to improper equilibrium of the 

elephant flows in the links between aggregation and core 

layers. Having a macroscopic view, one can easily achieve 

the proper load balance in the network (see Fig. 3). 

 

Fig. 2 The problem of load-balance in DiFS 

 

 

Fig. 3 Achieving a proper load balancing using macroscopic 

view 

4- Proposed Method 

In this section, we present an efficient mechanism for the 

flow scheduling problem in data center networks. To this 

end, we first give an overview of the proposed mechanism 

and then describe it. 

4-1- Overview of the proposed method 

The proposed algorithm has two main objectives. First, it 

aims to evenly distribute the load across the network. 

Second, it does not impose too much overhead on the 

central controller to achieve the first goal and can schedule 

the elephant flows at an acceptable speed. To manage 

traffic on a data center network, the proposed mechanism 

uses per-flow approach. This approach prevents out-of-

ordering of packets in end-hosts. As a result, we will not 

confront a degradation in TCP performance and end-host 

memory usage. Our mechanism combines the advantages 

of both distributed and centralized systems. Due to their 

global view, centralized systems are very suitable for 

routing elephant flows, while distributed systems are the 

best option for routing mice flows to avoid overloading the 

central controller. 

For the centralized system, we use a bidirectional search 

algorithm for scheduling elephant flows, which we 

describe in the following subsection. While for the 

distributed system, we use a simple yet efficient ECMP 

algorithm for mice flows. It is worth noting that in the 

proposed method, such as the mechanism presented in 

[27], the elephant flows are detected in the end-hosts. 

Similar to many of the existing works [4, 19, 27], we 

consider flows with a volume less than 100KB as mice 

flows and assume the others as elephant flows. In this 

work, we use the number of elephant flows as a load 

balancing parameter and the goal is to keep the number of 

active elephant flows on the network links as equal as 

Core1 Core2 Core3 Core4

SW 1 SW 4
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A B D
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possible. Although other parameters such as current 

bandwidth consumption can be used for this purpose, the 

results presented in [19] show that this parameter would 

give us similar performance in practice. Fig. 4 shows the 

flowchart of the proposed method. 

 

Fig. 4 The flowchart of the proposed method 

4-2- BSFS  

For elephant flows, we use bidirectional search algorithm 

to find an optimal path for each of them. When an elephant 

flow is detected by the source host and its destination host 

does not have the same edge switch as the source host, the 

packets of that flow are labeled with an “E”, indicating 

that the flow is elephant. Upon arrival of the first packet 

from an elephant flow to the edge switch, that switch sends 

the source and destination address of the packet to the 

controller to find the appropriate route. The controller 

executes the proposed BSFS algorithm and, through the 

OpenFlow protocol, installs routing information on the 

switches in the path suggested by the algorithm. On the 

other hand, when the last packet of a flow is processed by 

the source edge switch, a request to update the network 

traffic information is sent to the controller. The details of 

the proposed algorithm are discussed below. 

As mentioned previously in subsection 3.1, we use a 

directed graph to represent the Fat-tree topology. Based on 

this graph, we create a cost matrix      , where   is the 

number of network switches and   is the number of ports 

per switch. Each element of this matrix represents the 

number of active elephant flows on each network link. The 

reason for using    numbers for each switch is that we use 

a directed graph to model the topology;   numbers for 

uphill links and   numbers for downhill links. 

When a packet from an elephant flow is sent to the 

controller for routing, depending on the source and 

destination address of the packet, the controller can 

determine whether the two hosts are in the same pod or 

they are located in separate pods. If two hosts are in the 

same pod, the BSFS algorithm selects the best aggregation 

switch as the intermediate switch using a simple 

bidirectional search. But if the two hosts are located in two 

separate pods, the proposed BSFS algorithm starts two 

searches simultaneously; first one from the source edge 

switch to the core switches, searching between uphill 

links, and the other one from the destination edge switch to 

the core switches, searching between the downhill links. 

The aggregated result of these two searches is obtained for 

each of the core switches, and finally, using a simple linear 

search, the core switch that gives us a smaller value is 

chosen for routing. It is worth mentioning that in the Fat-

tree topology, when the core switch is specified, there will 

be only one path between each pair of hosts [2]. It is also 

important to note that since the two searches are 

completely independent of each other, they can be run in 

parallel, which significantly reduces the execution time. 

On the other hand, when the last packet of an elephant 

flow is reported to the controller, the cost matrix is 

immediately updated; That is, one unit is reduced from the 

cost of all links that were along that flow. Algorithm 1 

shows the pseudo-code of the proposed BSFS. 

The algorithm takes the cost matrix, packet   (the first or 

last packet of a flow), the source address, and the 

destination address of the host as input. If   is the first 

packet of a flow, using the bidirectional search method in 

the cost matrix, the path with the lowest cost is found for 

that flow (lines 1 to 6). Otherwise, if   is the last packet of 

a flow, the cost matrix is updated (lines 7 to 9); that means 

the cost of all the links along that flow is decreased by one. 

Algorithm 1. BSFS: Bidirectional Search Algorithm for 

Flow Scheduling 

Input: Cost Matrix, packet p, p.src, p.des 

Output: Optimal Path 

1. if  p is the first packet of a flow then 

2. if p.src and p.des belong to the same pod then 

3. Find an aggregation switch with minimum cost 
using BS // BS stands for Bidirectional Search  

4. else 

5. Find a core switch with minimum cost using BS 

6. end if 

7. else if p is the last packet of a flow then 

8. Update the Cost Matrix and the flow table of related 
switches 
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9. end if 

4-3- Time Complexity Analysis 

Here, we analyze the time complexity of our proposed 

BSFS method. For the first packet of each elephant flow, 

the time complexity of the proposed algorithm is as 

follows. If the source and destination host of a packet have 

the same pod, our algorithm searches among the 

aggregation switches inside that pod to find a switch with 

minimum cost (lines 2 and 3). Since the number of 

aggregation switches is equal to    , this step needs     . 

However, when the source and destination host of a packet 

are within different pods, our algorithm must find a core 

switch with minimum cost (lines 4 and 5). Regarding to 

the fact that the number of core switches in a Fat-tree 

topology is      [2], so the time complexity is      . As 

a result, the time complexity of the proposed algorithm is 

      for a Fat-tree topology with  -port switches. We 

should mention that in updating the cost matrix (lines 7 

and 8), only three (in intra-pod case) or six switches (in 

inter-pod case) are involved for each flow, which is 

constant numbers.  

It is worth to note that our BSFS method runs only for the 

first packet of elephant flows. Since the number of 

elephant flows in a data center usually is very low, the 

time complexity of our algorithm is reasonable.   

5- Performance Evaluation 

In this section, we evaluate the performance of our 

proposed BSFS algorithm. We compare it with Static [2], 

ECMP [18] and DiFS [19] in various respects. It should be 

noted that in this work we neglect DiFS performance 

degradation due to packet re-ordering. 

5-1- Simulation settings 

In this work, evaluation of the proposed algorithm on Fat-

tree topology with 8-port switches is performed. C++ 

programming language has been used for simulation of the 

proposed method. In the literature, there are many works 

that use custom simulators [7, 9, 28, 29]. Experiments 

have been performed on a computer having Intel® Core™ 

i5 CPU 2.3 GHz and 16 GB of memory. 

The event-driven simulation is developed on a packet 

level. The length of each packet is assumed to be 1KB. For 

each port, a buffer of size 64KB is assumed. The capacity 

of all network links is equal and set to 1Gbps. For the 

transmission delay, we consider 8μs while the propagation 

delay is ignored. In this work, the queuing delay has been 

considered. 

In our experiments, each server generates 20 flows 

continuously. We consider each flow with the probability 

of 90% as a mice flow and with the probability of 10% as 

an elephant flow. The size of mice flows is chosen 

randomly from the values 2KB, 10KB or 100KB. For the 

elephant flows, we assume the fixed size of 10MB. 

5-2- Traffic patterns  

We have used the following synthetic traffic patterns to 

perform the experiments [7, 13, 19]: 

Stride( ): This pattern sends a flow from host   to another 

host with the number           ; where,   represents 

the number of hosts in the network. 

Random: In this traffic pattern, a host with index   sends a 

flow randomly with uniform probability to another host   

anywhere in the network, such that,    . 

Staggered(           ): In this pattern, a host sends its 

flows with the probability of       to another host 

connected to the same edge switch, and with the 

probability of     to another host in the same pod. It also 

sends the flows to other hosts with different pods with the 

probability of              . 

5-3- Evaluation criteria 

We use the following criteria to evaluate and compare our 

proposed method with other mechanisms: 

Flow Completion Time (FCT): This criterion specifies the 

end time of a flow. In fact, it indicates the time when all 

packets of a flow are received by the destination. 

Delay: Indicates average network latency. This criterion 

tells us that how long it takes in average for a packet to 

reach its destination. 

Aggregate Throughput: This criterion measures the 

utilization of network links. In fact, it indicates the average 

rate at which the network delivers the packets.  

5-4- Simulation results 

Here, we evaluate the results of simulations. Fig. 5(a) and 

Fig. 5(b) show the average delay and network aggregate 

throughput under different traffic patterns, respectively. As 

can be seen, for Stride(2) and Staggered(0.5,0.3) almost all 

methods have low delay and high throughput. However, in 

Stride(i), by increasing the value of   and in 

Staggered(           ) by decreasing the values of        

and then      , BSFS performs much better. For the 

Random traffic pattern, since it is more likely for elephant 

flows to collide and most of the flows will be out of the 

pods, our proposed algorithm performs best by 

establishing a proper balance between the elephant flows. 
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In particular, for the Random traffic pattern, BSFS 

provides about 20% higher throughput than DiFS. 

Therefore, we claim that our proposed mechanism 

performs better for non-local traffic than other 

mechanisms. 

Table 1 and Table 2 illustrate the cumulative distribution 

function of number of completed flows for different 

algorithms under two traffic patterns Stride(4) (Table 1) 

and Random (Table 2). It can be clearly seen that BSFS 

terminates the flows earlier. For the Random traffic 

pattern, this superiority is much more impressive. This is 

due to the balanced distribution of elephant flows by the 

proposed method. While, in other algorithms, there is a 

longer flow completion time due to the frequent collisions 

between the elephant flows. For the Random traffic 

pattern, our BSFS delivers all the flows to their destination 

hosts below one second, while DiFS delivers about 88%, 

ECMP 81% and Static only deliver 72% of flows at this 

time. 
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Table 1. The Flow Completion Time of different algorithms under Stride (4) 

0 50 100 150 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400

Static 0 976 980 984 1129 1310 1582 1671 1860 2088 2329 2434 2490 2519 2540 2560

ECMP 0 983 988 989 1207 1441 1740 1949 2081 2219 2416 2480 2529 2539 2560 -

DiFS 0 971 973 974 1439 1741 1961 2134 2262 2386 2481 2537 2549 2560 - -

BSFS 0 905 916 918 1393 1968 2389 2555 2560 - - - - - - -

Algorithm
Time (in millisecond)

0 50 100 150 200 400 600 800 1000 1200 1400

Static 0 969 969 969 1087 1899 2088 2413 2528 2541 2560

ECMP 0 1011 1011 1011 1421 1913 2120 2454 2549 2551 2560

DiFS 0 1031 1031 1031 1561 2005 2299 2479 2551 2560 -

BSFS 0 1030 1030 1030 1695 2120 2356 2560 - - -

Time (in millisecond)
Algorithm

Table 2. The Flow Completion Time of different algorithms under Random 
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(b) Aggregate throughput 

Fig. 5 Performance comparison of algorithms under different 

traffic patterns 

6- Conclusion and Future Work 

In this paper, we proposed an efficient mechanism to 

achieve load balancing in data center networks. The 

proposed mechanism uses the ECMP algorithm to send 

mice flows, while it takes advantage of the bidirectional 

search algorithm in the central controller to schedule the 

elephant flows. Simulation results under various traffic 

patterns show that the proposed mechanism can balance 

the network load more efficiently and provide better 

performance in comparison with the Static, ECMP and 

DiFS mechanisms. The less locality in network traffic, the 

higher the advantage of our approach is. Specifically, for 

the Random traffic model, our mechanism provides 20% 

higher throughput than DiFS. As a possible future research 

direction, one can take into account the priority of flows 

when scheduling them. Furthermore, the proposed 

mechanism can be extended by considering failures in data 

center. 
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