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Abstract  
Quantum telecommunication has received a lot of attention today by providing unconditional security because of the 

inherent nature of quantum channels based on the no-cloning theorem. In this mode of communication, first, the key is sent 

through a quantum channel that is resistant to eavesdropping, and then secure communication is established using the 

exchanged key. Due to the inevitability of noise, the received key needs to be distilled. One of the vital steps in key 

distillation is named key reconciliation which corrects the occurred errors in the key. Different solutions have been 

presented for this issue, with different efficiency and success rate. One of the most notable works is LDPC decoding which 

has higher efficiency compared to the others, but unfortunately, this method does not work well in the codes with a high 

rate. In this paper, we present an approach to correct the errors in the high rate LDPC code-based reconciliation algorithm. 

The proposed algorithm utilizes Integer Linear Programming to model the error correction problem to an optimization 

problem and solve it. Testing the proposed approach through simulation, we show it has high efficiency in high rate LDPC 

codes as well as a higher success rate compared with the LDPC decoding method - belief propagation – in a reasonable 

time. 
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1- Introduction 

Quantum key distribution protocols [1,2] share a secure 

key between two remote parties and then establish secure 

communication between them using two channels; 

quantum channel and public channel. Quantum channel is 

used to carry qubits which include secret key information 

and after the key agreement between the two parties, Alice 

(A) and Bob (B), they use the secret key to establish 

secure communication in the public channel. It is 

unfortunate that the key establishment process always 

takes along with errors because of channel noise, device 

imperfection [3, 4], or the presence of eavesdropper (Eve) 

[5]. Thus, after transmitting the key via the quantum 

channel, A and B use the public channel to estimate the 

amount of Quantum Bit Error Rate (QBER) and correct 

errors in the key to establish symmetric key on both sides 

of the connection. 

To do this, A send a key, and then at the side B, 1- the key 

bits are sifted, then 2- B estimates errors in sifted key bits, 

QBER, using the error estimation approaches [6-9]. 

Comparing the estimated QBER with a determined 

threshold, B decides that the channel is affected by 

channel or device noises or the presence of Eve. If QBER 

is higher than the determined threshold, because of the no-

cloning theorem [10], it shows that Eve spoofs the 

connection and the key is not safe anymore. Otherwise, the 

next step is begun, 3- B uses a reconciliation algorithm 

[11-15,45-47] to correct the errors and then uses some 

privacy amplification methods [16,17] to remove the 

disclosed information along the reconciliation step. 

Key reconciliation is important because using an efficient 

approach with minimum information leakage, in addition 

to increase secure key generation rate, it impacts on the 

security of the communication between two sides. The first 

error reconciliation was the BBBSS protocol [11] which 

uses some passes to exchange raw key subsets and check 

the parity of the blocks to determine and correct the errors 

in the subset. This approach was then improved by [12] as 

the Cascade algorithm. Other common approaches based 

on the BBBSS algorithm are Furukawa–Yamazaki [13] 

and Winnow protocol [14] which uses a Hamming code to 

reduce the number of errors. 

Currently, LDPC (low-density parity check) [18] method 

has been widely used in this subject [15, 48, 49] as the 

Belief propagation algorithm (BP) [19], also known as 

sum-product algorithm, was used to correct the errors. 

This approach has attracted a lot of attention because it 

works more efficiently rather than others [20]. It should be 
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mentioned in comparison to Cascade and Winnow, LDPC 

provides lower communication overhead and also it can 

reconcile errors at a higher rate than those. 

Using artificial neural networks for error correction was 

introduced in [21]. The work uses the mutual 

synchronization of artificial neural networks to correct 

errors in the sifted key after the transmission in the 

quantum channel. Two sides create the neural networks 

based on the keys that they have. After the mutual learning 

process, they correct all errors and can use the key. But, 

this approach suffers from high processing time and source 

consumption so it has not been investigated in higher code 

length. 

In this paper, we propose an efficient approach to 

reconcile errors in quantum keys distribution. As 

mentioned earlier, by comparing reconciliation efficiency 

of the three most common reconciliation algorithms, 

LDPC, Cascade and Winnow, it shows that the efficiency 

of the LDPC based reconciliation algorithm is superior to 

the two other in most of the QBERs. So, by considering 

this fact, we focus on LDPC codes approach. But as 

discussed later, the reconciliation based on the decoding of 

these codes suffers from lack of efficiency in codes with 

high code rate. 

Indeed, the code rate has a direct influence on the amount 

of disclosed information in the reconciliation process. In 

higher rates that benefit from less leakage, LDPC approach 

or more specifically, BP decoding approach does not work 

with enough success. Focusing mentioned problem, in this 

paper, we decided to propose an approach to correct the 

errors in high rate codes. To do this we utilize Integer 

Linear Programming (ILP) approach. 

It is noteworthy that the (Mixed) (Integer) Linear 

programming approaches have already been used to 

decoding the LDPC codes [22-25], but as it known, it is 

the first time that an Integer Linear Programming (ILP) 

model is utilized to reconcile the key in Quantum key 

distribution and more specifically key reconciliation 

algorithms. Furthermore, compared to mentioned works, 

the way we model the problem here is completely different 

in the number of variables and constraints which has a 

direct impact on the complexity of solving the ILP 

problem. 

The rest of the paper proceeds as follows: in section 2 we 

review briefly the required preliminaries, LDPC coding 

concepts and ILP basics. In section 3, a detailed 

description of the proposed approach based on ILP is 

presented. The experimental results are evaluated, 

discussed and compared in section 4. Finally, section 5 

concludes the work. 

2- Preliminaries 

In this section, we describe the basic concepts of this 

study. First, a brief overview of the LDPC codes is given, 

and then the concepts of (Mixed) (Integer) Linear 

Programming are discussed.  

2-1- LDPC Codes 

Low-density parity check (LDPC) codes were first 

introduced by Gallager in 1962 [18] as a method of 

transmitting a message over a noisy channel with error 

correction capability. Later, significant attentions were 

drawn to LDPC code due to its near-Shannon performance 

[26, 27]. The decoders for LDPC codes are based on 

Belief propagation (BP) algorithm and its variants [28-30]. 

However, BP decoding usually suffers from decreasing the 

success rate in presence of high error rates.  

LDPC codes       can be considered as a  -dimensional 

subspace of        which represented by a generator 

matrix   whose rows span code   and a parity check 

matrix   whose rows span    - i.e.,       if and only if 

      , where           . In LDPC codes,   and   

are defined as the code and codeword length, 

correspondingly. The parameter   is as code rate in range 

      which defines the correcting power and efficiency.  

When the sender wants to send vector   through noisy 

channel, instead of sending raw data, to have correction 

chance, considering   as generator matrix, she calculates 

codeword   as  

 
       (1) 
 

The symbol   corresponds to matrix (vector) 

multiplication in modulo 2 arithmetic. 

At the channel end, the receiver receives the codeword   

and use   as parity check matrix to verify that the received 

codeword   is error-free or not. If    , it means the error 

syndrome 

 

       

 
(2) 

is equal to a zero vector. Otherwise, the non-zero elements 

of   can provide that the channel was noisy and there are 

some positions in the received codeword which are 

affected by some errors. In conditions that the occurred 

errors do not exceed the correction capacity of the channel 

code, the decoding process can correct the errors. 

Decoding algorithms for LDPC codes are called message 

passing algorithms [19, 28-30], and work iteratively. 

These algorithms work based on Tanner graph [31], 

considering LDPC code as a graph consisting of message 

and check nodes corresponding to columns and the rows of 

the  , respectively. The reason for their name is that at 

each round of the algorithms, messages are passed from 
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message nodes to check nodes, and from check nodes back 

to message nodes, iteratively until the state of the graph 

converge to a valid codeword. 

What is important about BP algorithm is that the iteration 

of decoding is ended when all parity check equations are 

satisfied and a valid codeword has been found. In some 

cyclic graphs, or when errors are higher than they can be 

decoded correctly, more iterations do not change the state 

of the graph and errors cannot be corrected. So, decoding 

fails without finding the correct codeword as the output. 

For more details about LDPC codes, the readers can refer 

to [18, 19]. 

2-2- Optimization Approaches 

Combinatorial optimization deals with the problem of 

minimizing or maximizing a function of several variables 

subject to some constraints. The constraints can be in the 

form of equality or inequality, linear or nonlinear. If the 

constraints are linear, the feasible region is a convex 

polyhedron, which has a global minimum, and the solving 

methods can converge to this optimal point. But if the 

constraints are nonlinear, solving the problem has some 

complexity and requires more provisions [32].  

Linear programming (LP) problem is defined as follows: 

 
                    (3) 

 

The      inequalities determine the feasible region 

which is bounded by the system of constraints, including 

the possible values of the variables that satisfy all of the 

constraints. The aim of linear programming is to find the 

best solution to a problem by maximizing or minimizing 

the objective function   . As shown in equation (3), the 

objective function and all constraints are linear. It must be 

mentioned that the complexity of solving the LP problem 

is polynomial [33].  

If the variables are integer, we have Integer Linear 

Programming (ILP) problem as follows: 

 
                    (4) 

 

As the variables are discrete in these problems, the solving 

methods differ and consequently the complexity of solving 

is affected such that in general, the time complexity of 

solving these problems is exponential [33]. 

However, some works have been done and some 

improvements have been achieved. A prominent one is LP 

relaxation which by analyzing the problem constraints, 

some conversions could be performed [31] or some new 

constraints may be added to the problem [34] and convert 

the ILP problem to LP one with polynomial solving time 

which is practical way to solve large size problem.  

In addition to this naïve approach, Branch-and-bound [35] 

and cutting-plane [36] methods have been principle tools 

for solving ILP models in recent times. Both of them deal 

with the models by solving a sequence of LP problems by 

simplex methods [33]. It will be clear that only finitely 

many LP problems need to be solved in principle.  

 It is noteworthy that because of great industrial interest in 

optimization applications, there exist many well-develop 

solvers such as IBM ILOG Cplex [40], Gurobi [41], and so 

forth which employ proper techniques to solve large 

problems with reasonable complexity in terms of time and 

space.  

3- Proposed Error Correction Approach 

based on ILP Model 

In this section, we present the detail of the proposed 

approach to correct errors in the sifted key based on the 

Integer Linear Programming approach.  

Suppose A and B prepare   and share it. A after choosing 

the key   , calculates syndrome    as equation (2) and 

send them to B via quantum and public channel, 

respectively.  

After B obtains the sifted key,    and syndrome of A,   , 

through mentioned channels, because of the presence of 

the noise, indeed he received a noisy version of     

           (5) 

Where   is the noise vector and   used for summation 

operation in module 2. 

Then B calculates the syndrome of    as equation (2),    

using   and   . Comparing    and   , he gets some 

information about error occurrence. In a more precise 

view, he has: 

 
                              

          
(6) 

 

Which equals to: 

 

    =       (7) 

 

Where the symbol   and  corresponds to matrix 

multiplication and summation operation in modulo 2 

arithmetic. 

B should determines   vector as it satisfies equation (7). 

Indeed along with decoding approaches aim to find the 

nearest codeword to the received one, B should determines 

  vector with minimum weight. In the other word, B 

searches for a codeword with minimum Hamming distance 

to received codeword to decode it.  

So B can model the problem to an optimization problem 

aiming to find an error vector with minimum weight to 

satisfy equation (7). To do this, he defines variables, 

constraints, and objective function based on the nature of 

the original problem. After modeling the problem, using 
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solving tools, B solves it to find the solution and determine 

the error vector  . Defining   as: 

 

                                (8) 

 

Where    value 1 or 0 corresponds to the presence or 

absence of noise at the position   in the received key,    . 

As B tries to find nearest codeword to the received key    

which equally means he should find   vector with 

minimum weight. So, the objective function is defined as 

follow: 

 

   ∑  

 

   

 

                 

 

(9) 

To find the feasible region for possible values of noise 

vector, it should be mentioned that the noise vector should 

be satisfied by the equation (7). Each row of the  (  ) 

behaves like a parity check equation that must be satisfied. 

Given the equation (7), the variable    as a   binary 

vector, is defined as: 

 
         

 
(10) 

Therefore, the constraints could be shown as: 

 
                (11) 

  
More precisely, the constraints are as follows: 

 
    

                   (12) 

 

Where   used for multiplication operation over integer 

numbers and by     
       ,  we mean            

              . 

 

Thus the model is as follow: 

 

   ∑  

 

   

 

    
                   

                 

(13) 

 

As seen in the problem, the variables are binary and the 

constraints are using module 2 multiplication operation. 

So, here we convert the module 2 constraints to constraints 

over   by doing as follows: in [42], The Integer Adapted 

Standard Conversion Method (IASC) was proposed to 

apply to Boolean polynomials. 

This method is based on the ability of presenting an 

equation modulo 2 as an equation over   and works as 

follows: considering a Boolean polynomial   over    and 

assume this polynomial as a polynomial   over the 

integers by replacing XOR by addition. All solutions of 

the Boolean equation       will yield a multiple of 2 

when plugged into  . Thus, for                   it holds 

that             . Then we obtain an integer equation by 

subtracting a multiple of 2 from                  where 

     .  

As an example, consider the Boolean equation  

 
                        
 

(14) 

If we evaluate the corresponding real-valued polynomial 

              for all solutions of (14), we get 0, 2, 

4 as results. That means that a solution of (14) is a solution 

to the following equation over the integers  

 
                       
 

(15) 

where             and            for           .  

The number of variables per equation is increased only by 

one compared to the Boolean polynomial.  

ILP formulation over  : In order to conquer Boolean 

constraints, we use the IASC conversion method to 

convert the model to ILP one. Indeed, we convert 

summation in binary to integer space, so we define new 

variables as: 

 
                   (16) 

Thus, the proposed ILP model for error correction problem 

is as follows: 

   ∑  

 

   

 

    
                         

                ,  
              

 

 

 

 

 

(17) 

Computational and Space Complexity Analysis: The 

proposed ILP model, has     variables,   bits for error 

vector and   integer variables, and   linear constraints 

corresponds to the rows of parity check matrix and   

integer constrains for error vector bits. As mentioned 

before, solving this type of problems is known to be NP-

hard in general [51]. It should be noted that decoding 

methods and more specifically BP algorithms are known 

as NP-hard problems [50] and in addition, the performance 

of these algorithms depend on the iteration numbers. 

Though LDPC codes were constructed using a sparse 

Tanner graph, so the corresponding generator and parity 

check matrices were sparse, too. Such as in this work, we 

model the error correction in LDPC codes as ILP, so the 

sparsity property of H parity matrix causes the sparsity in 

the constraints set and we have a sparse ILP. Recently 

some works [37, 38] have been done on Sparse Integer 

Linear Programming (SILP), the case that the coefficient 
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matrix is sparse. It was shown that SILP can be solved in 

polynomial time in such problems [39].  

4- Evaluation of the Results 

To evaluate the proposed ILP approach for error correction, 

in this section, we provide the detailed comparisons of the 

original BP algorithm, Multi-matrix BP (MBP) [8] and 

ILP proposed approach in different parameters; efficiency, 

success rate, and speed as three criteria for judging a key 

reconciliation algorithm. All simulation data are generated 

by random scenarios. In Multi-matrix BP (MBP) [8] 

approach, in each iteration multiple matrices were 

employed to generate more useful information in error 

correction. As claimed by the authors the iteration number 

falls and the convergence speed increases. Indeed cycles 

which appear in one matrix and reduce the success rate, 

could be eliminated by other matrices. 

For comparisons, we use 4 pool standard LDPC codes [43, 

44] with code length        with different code rates 

                           .  

To evaluate the performance of ILP proposed approach, 

we compare it with recent approaches to correct errors, BP 

and MBP. To do this, we generate different sets of keys at 

QBERs in range         step by 0.1. At a given QBER, we 

generate 100 random scenarios of keys, perform each 

approach on the keys, and present the results as the 

average over the random scenarios for each QBER. The 

simulation parameters were presented in table 1. 

 
Table 1: simulation parameters 

Parameter Value 

Code length 1944 

Code rates 0.5, 0.6777, 0.75, 0.8333 

QBER range [1,1.7] 

Number of random keys 100 

It should be mentioned that the ILP, BP and MBP 

approaches were implemented in Python programming 

language and all the experiments were done on Intel (R) 

core (TM) i7-9750H CPU @ 2.60 GHz with 16 GB 

memory. 

4-1- Efficiency of LDPC-based Approach 

As the most important factor in reconciliation algorithms, 

we can name reconciliation efficiency   which shows the 

relation of the amount of information B obtains to the 

minimum amount of information he needs for correcting 

all errors that theoretically calculated. Therefore, to ensure 

that he can correct all errors,   must be greater than or 

equal to 1, i.e.      . In theory,       happens when 

LDPC code tends to be infinite in length and no cycles in 

structure, which can reach the Shannon Limit [9]. So in 

practice,      . The reconciliation efficiency   which 

implies the efficiency and security of a reconciliation 

strategy, is calculated as: 

 

  
 

      
 

 

(17) 

where m and n are the numbers of check nodes and 

variable nodes of the corresponding Tanner graph of 

LDPC code, equivalent by number of rows and columns of 

parity check matrix  ,   is the result of Quantum Bit Error 

Rate estimation, and      is the Shannon binary entropy 

represented as: 

 
                            
 

(18) 

In figure (1), we present the efficiency of the LDPC codes 

for different code rates in QBERs in range        . As 

seen, by increasing the QBER, the efficiency of LDPC 

codes in all code rate scenarios was decreased. But, in 

higher code rate, the efficiency of LDPC codes gets closer 

to 1.  

Indeed under same value of  , in a high code rate 

compared to lower code rate,   is smaller which means 

the sender needs to send syndrome with smaller length. So 

based on equation (17), the   value gets closer to 1 

meaning that it needs to disclose a lower amount of data. 

So by using LDPC codes with high code rates in key 

reconciliation algorithms, we can achieve better efficiency 

as well as a higher secure key generation rate. 

 
Fig. 1 Comparison of reconciliation efficiency of LDPC codes with 

different code rate values at different QBER. 

4-2- Success Rate 

The success rate of reconciliation algorithms shows the 

number of the successful scenarios that the reconciliation 

algorithm can correct the errors. Unfortunately, the success 

rate of the BP algorithm may be relatively impacted by 

cycles which means if LDPC codes are not cycle-free [31], 

it cannot get to the corrected answer even by consuming 

more time or with running the message passing in more 

iterations. So in these situations, the success rate of the BP 

is decreased. 
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In higher code rate, because of the lower number of check 

nodes in comparison to message nodes in Tanner graph of 

LDPC codes, the probability of successful decoding and 

correcting the errors is decreased, so as a result, the 

success rate is decreased too. 

As shown in figure (2), in the code rate         , the BP 

algorithm works well and it could decode all the corrupted 

received keys even in high QBER values, and it achieve 

100% success rate. But, in a higher code rate   

       which the number of check nodes, m is decreased 

compared to         , the BP falls in wrong decoding or 

fails to reach the result. So the success rate of BP 

decreased drastically by increasing the QBERs. 

So we can conclude that the BP algorithm is not proper 

enough to correct errors in high rate LDPC codes and we 

should look forward to a more successful approach to 

correct errors in such codes. 

 
Fig. 2 Comparison of success rate of BP algorithm with different code 

rate values at different QBER. 

About ILP-based error correction proposed algorithm, in 

low code rate         , the proposed approach can 

correct the errors in all scenarios in reasonable time and it 

has a success rate 100% for all QBERs in range         as 

well as the BP at code rate         . 

But in contrast to BP algorithm, as shown in figure (3), at 

code rate          , the ILP proposed approach has more 

success in comparison to the BP and MBP algorithms. 

Indeed by analyzing the results, it reveals that in all 

scenarios which BP gets the results, the ILP proposed 

approach gets the correct result too, and in addition, in 

most of the failed scenarios by BP, ILP approach can solve 

the problem and correct the errors successfully. In fact we 

can conclude that in such problems that the cycles could 

degrade the performance of the decoding, ILP approach 

can step forward and correct errors. 

4-3- Reconciliation Speed 

For key reconciliation, the convergence speed is calculated 

as the required time to correct the errors. Here we evaluate 

the convergence speed of BP, MBP and ILP proposed 

algorithms in error correction of the LDPC codes with 

different code rate                    by calculating the 

consumed time to perform error correction under different 

QBERs. At a given QBER, we generate 100 sets of keys, 

perform each algorithm on the keys, and calculate the 

average amount of the required time for error correction. 

The results are shown in figure (4) and figure (5) for 

different code rates. Clearly, under different code rates, the 

algorithms spend reasonable time for correcting errors. As 

shown in figure (4) in code rate         , by increasing 

the QBER, the speed of the correction algorithm grows 

slightly. Indeed, enough number of check nodes in 

comparison with message nodes causes the algorithms to 

obtain the solution and correct the errors in the low time. 

As seen in figure (4) and (5), since MBP did the decoding 

computation for some matrices, even it achieves less 

iteration number, it consumes much more time in 

comparison to BP with only one matrix.  

 
Fig. 3 Comparison of success rate of BP algorithm and Proposed ILP 

model in error correction of LDPC code with r=0.8333 at different 
QBER. 

 
Fig. 4 Comparison of speed of BP algorithm and Proposed ILP model in 

error correction of LDPC code with r=0.6667 at different QBER. 

But as seen in figure (5), which is correspond to the code 

rate            with the lower number of check nodes at 

the same number of message nodes compared to the 

previous scenario, determining the right codeword requires 

more time in both BP approaches and ILP proposed 

algorithms. So the consumed time is increased compared 

to the code rate         .  
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It is notable that the solving time of the ILP problem is 

less than the required time for BP algorithms in both of the 

mentioned code rates. The increase in the consumed time 

of ILP at the high values of QBER in the figure (5) is 

caused by the fact that in most of the scenarios with high 

QBER that the BP algorithm fails, the ILP purposed model 

continue and solve the problem. considering the difference 

in the success rate of these algorithms presented at figure 

(3) can justify the results in the figure (5). 

 

 
Fig. 5 Comparison of speed of BP algorithm and Proposed ILP model in 

error correction of LDPC code with r=0.8333 at different QBER. 

5- Conclusion and Future Works 

Quantum key distribution protocols share a secure key to 

using the Quantum channel. Because of the unavoidability 

of the existence of noise, distillation algorithms are 

necessary to purify the key. As one step in the distillation 

process, key reconciliation has the responsibility to correct 

errors of the key efficient manner. 

Comparing reconciliation efficiency of the reconciliation 

algorithms, LDPC code-based reconciliation algorithms 

have revealed the higher efficiency but as the code rate 

grows, the success rate of the most used decoding 

algorithm, belief propagation, decreased considerably. 

Besides the fact that in such codes, the amount of 

disclosed information was decreased. So to use this helpful 

feature of high rate LDPC codes, we have to overcome this 

problem. In this paper, focusing on high rate LDPC codes, 

we propose an approach to correct the errors in such codes. 

The proposed approach utilizes Integer Linear 

Programming (ILP) approaches. To do this, we model the 

error correction problem, by defining the variables, 

constraints, and objective function corresponding to the 

reconciliation algorithm aim. Then to have more efficient 

modeling, we convert the binary model to a model over  . 

So the final ILP model is defined over   and it has sparsity 

property, which led to having an efficient model in terms 

of time and space solving complexity to have with 

reasonable solving time.  

Finally, by evaluating the proposed algorithm at the crucial 

parameters for judging the efficiency of the reconciliation 

algorithms, our approach is superior to the BP algorithm in 

high rate codes regarding success rate and reconciliation 

speed in different rates and different QBERs. 

As future work, by considering scalability the presented 

optimization model can be improved, so it can be utilized 

more efficiently in problems with more variables and 

constraints. By utilizing this improvement it can be 

employed to perform error correction in codes with longer 

length. 
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