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Abstract  
This paper proposes an innovative approach by employing a one-dimensional Convolutional Neural Network (CNN) for 

demodulation in VLC systems. The used Data-set is real and available online, providing a robust foundation for analysis. It 

encompasses modulated signals in seven different modulation types, with 29 transmission distances ranging from 0 to 140 

centimeters. By accounting for the varying distances between the transmitter and receiver, the model can more accurately 

interpret the received signals. Additionally, the study suggests that utilizing memory to learn previous symbols, which is 

essential for mitigating the effects of inter-symbol interference (ISI), can significantly improve demodulation accuracy. Our 

results of memory-based demodulation show a better performance in contrast to the previous one (AdaBoost). 
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1- Introduction 

Today, due to the fast development of electronic and digital 

devices, we are facing a familiar problem called the increase 

of wireless data traffic. One of the solutions is fast wireless 

transmission [1][2]. Visible Light Communication (VLC), 

due to its advantages such as unregulated spectrum, 

excellent security, and stability to electromagnetic 

interference, has been considered by researchers in the field 

of short-range fast wireless communications [3]. 

The accurate positioning is difficult in indoor optical 

communication scenarios [4]. There are several indoor 

positioning technologies to achieve the desired result, such 

as Global Positioning System (GPS), infrared, Ultra-

Wideband (UWB), ultrasonic, etc. Although these 

technologies have high accuracy in positioning, most 

require specialized infrastructure that leads to high costs [5]. 

Other cases of indoor positioning, such as radio frequency 

identification (RFID) and Wi-Fi, can be affected by mutual 

interference and multi-path effects; therefore, high-

accuracy positioning cannot be achieved. Recently, indoor 

positioning has been accepted as a promising candidate in 

VLC [6]. To achieve better positioning performance, the 

machine learning (ML) method can be introduced in indoor 

positioning with VLC [7]. 

ML-based model-free demodulators are becoming popular, 

where the need for prior knowledge can be eliminated. In 

the modulation process, the phase and amplitude of the 

signals are modulated [8]. Recently, much work has been 

done in VLC applications using ML, and we will review 

some of them. Ma et al. [9] studied three types of 

demodulators based on ML methods in VLC, including 

eight modulation types. Their proposed convolutional 

neural network (CNN) model receives images generated 

using the modulated signals and recognizes the signal by 

image classification. In [10], they proposed a semi-

supervised self-trained large margin classifier to track and 

classify popular single carrier modulations in nonstationary 

environments, demonstrating robust performance even in 

low SNRs. In [11], K. Majeed et al. have done 

comprehensive research on indoor positioning for VLC, in 

which the combination of multiple classifiers, including 

KNN, RF, and ELM, was studied. They have shown that by 

increasing the distance, the positioning accuracy decreases. 

Lin et al. [12] proposed the CNN in the NOMA-VLC 

system, in which signal compensation and retrieval are 

performed jointly, which can improve the distortion caused 

by multi-directional scattering. Shi et al. [13] presented 

ML-based techniques for communication signal 

demodulation. These techniques are used in channel 

estimation and traditional decision-makers. 

In [6], demodulation is used for carrier-less amplitude-

phase (CAP) modulation, which is a significant modulation. 

Also, criteria such as accuracy, bit error ratio (BER), and 

signal-to-noise ratio (SNR) have been investigated; 

experimental results show that CAP- VLC-based systems 
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result in better performance, including 92.4 % accuracy in 

various conditions and increased BER. In [14], M-QAM (M 

= 16, 32, 64, 128, 256), OOK, QPSK, 4-PPM, modulation 

schemes have been investigated, and in addition, two DL-

based demodulators and AdaBoost have been proposed. 

However, in [9], the images are used as data, and the 

demodulation accuracy is not high and acceptable; also, in 

[11] [12], the complexity is high, and the accuracy is low 

due to the use of multiple classifiers for positioning. The 

disadvantages of [13] and [10] are that the demodulation 

accuracy depends on SNR, and the distance is not 

considered. 

In this paper, for the first time, we have applied distance 

information in signal demodulation; therefore, the network 

can learn and benefit from it to increase signal 

demodulation accuracy. Joint demodulation and ranging are 

performed using 1D-CNN, in which the signal sequence is 

considered the network input. The sequence is a one-

dimensional input that needs a simpler network than the 

neural networks, which take the images as input data. 

Moreover, real VLC data with 29 different distances and 

seven modulation types are used to evaluate the 

performance of the proposed method. 

In the proposed network, each label is equivalent to a 

modulation level and its distance, and by classifying a 

symbol, demodulation and its distance are determined. This 

dual capability significantly streamlines the process, 

making it more efficient and accurate. 

The proposed 1D-CNN can increase the demodulation 

accuracy by applying memory and distance information, 

specifically for higher-order modulations and long 

distances. This is particularly important in VLC systems, 

where signal degradation can be significant at greater 

distances and higher modulation orders. The inclusion of 

memory helps the network to understand the signal context 

better, improving its ability to demodulate accurately. 

Furthermore, our method simplifies the network design 

while maintaining high performance, making it a practical 

solution for real-world VLC applications. 

Additionally, we explored various configurations of the 

network to optimize its performance. By adjusting 

parameters such as the length of the input sequence and the 

depth of the network, we were able to find the best settings 

that maximize accuracy. The results from our extensive 

simulations show that our approach not only outperforms 

traditional methods but also offers a robust solution that can 

adapt to different environmental conditions and modulation 

schemes. 

Integrating of distance information and memory into the 

1D-CNN represents a significant advancement in the field 

of VLC. This approach increases demodulation accuracy 

and provides a comprehensive framework for addressing 

common challenges in optical wireless communications. 

The use of real-world data further validates the 

effectiveness of our method, demonstrating its potential for 

deployment in practical scenarios. Future work could 

expand on this foundation by exploring additional ways to 

leverage contextual information and improve network 

architecture, paving the way for even more sophisticated 

and reliable VLC systems. 

 

 

2- Methodology 

The system model used in this study is identical to that of 

[9], which is briefly illustrated in Fig. 1. For more detailed 

information, please refer to [9]. 

2-1- Data-set 

The used data set generated in real physical environments 

is accessible via 

https://pan.baidu.com/s/1rS143bEDaOTEiCneXE67dg [9] 

in seven modulation schemes: 16-QAM, 32-QAM, 64-

QAM, 128-QAM, 256-QAM, OOK, and QPSK. 29 

transmission distances ranging from 0 cm to 140 cm are 

considered for the seven modulated signals. There are four 

different numbers of sample points (N = 10, 20, 40, 80) in 

each period for every modulation scheme. Lengths of 

signals according to the total number of periods in each case 

are listed in Table 1. 

It can be seen from Fig. 2 that all 16 labels of 16-QAM have 

no similarity in amplitude and phase. 

2-2- Network Structure 

Due to the simplicity and high efficiency of the CNN 

network, we used this type of network for demodulation. 

The distance information of the received signal is used for 

demodulation; the different distances can have specific 

features, such as SNR, which can help the demodulation 

process. Furthermore, it is important to note that the 

sequence of the received signal serves as the singular input 

for the network. By utilizing this one-dimensional input, a 

more straightforward neural network can be constructed 

compared to those designed for two- or three-dimensional 

Fig 1: Demodulation based on ML of VLC [9]. 
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images. This is due to the fact that signals represented in 

image form often contain extraneous and redundant 

information. The intricacies of the model put forth are 

delineated further in the subsequent discussion. 

In this research, a series of signals is regarded as the 

fundamental input data for a demodulator rooted in 

Convolutional Neural Network technology. The dimensions 

of each input vector are inherently contingent upon the 

signal's specific sampling rate. Delving deeper into this 

discourse, the innovative CNN architecture being presented 

comprises four meticulously crafted convolutional layers, a 

pivotal Global Average Pooling layer, and two intricately 

designed fully-connected layers. These convolutional layers 

serve as vital components aimed at extracting imperative 

features from the input data by employing filters of varying 

sizes. Moreover, it is crucial to mention that the depth of 

these filters has been discerningly determined with 

precision based on the unique characteristics inherent 

within each individual convolution layer, thus 

encapsulating an intricate level of complexity as delineated 

in.Eq. (1): 

 

𝑦𝑘
𝑙 =  𝑏𝑘

𝑙 + ∑ 𝑤𝑖𝑘
𝑙𝑁𝑙−1

𝑖=1 ∗  𝑥𝑖
𝑙−1    (1) 

 

Where 𝑦𝑘
𝑙  and 𝑏𝑘

𝑙  denote the k-th feature map and its bias in 

layer l, 𝑥𝑖
𝑙−1 is the i-th feature map in layer l-1, 𝑤𝑖𝑘

𝑙  is the 

weights from i-th feature map in layer l-1 to the k-th feature 

map in layer l, (*) represents the convolution operator and 

𝑁𝑙−1 is the number of feature map in layer l-1 [15].  

The Global average pooling layer reduces the number of 

parameters that can be trained during model learning [16] 

[17]. In the realm of Classification, SoftMax activation 

performs two classes in the fully connected layer. As 

mentioned, these two types each represent two parameters; 

The estimated distance and the desired modulation symbol 

number will result in 29*L classes, where L is the number 

of desired modulation labels. For example, we have 29*32 

classes in 32-QAM. Each class is related to a modulation 

label and its distance. At this layer, the learning method uses 

feed-forward and back-propagation algorithms [18]. 

The Leaky RELU is applied as the activation function for 

all convolutional layers, and in the last layer, the SoftMax 

function is used. In the RELU activator function, some 

neurons die or become inactive, and the output becomes 

zero. To solve this issue, a function called Leaky RELU is 

used, which prevents the death of neurons with negative 

values. In our proposed CNN, the Leaky ReLU activation 

function is employed instead of the standard ReLU. While 

ReLU is widely used due to its simplicity and effectiveness 

in mitigating vanishing gradients, it suffers from the "dying 

ReLU" problem, where some neurons output zero for all 

inputs and stop learning during training. To address this, 

Leaky ReLU introduces a slight negative slope (e.g., 0.1x) 

for inputs less than zero, ensuring that all neurons propagate 

gradients during backpropagation. This modification 

enhances the model’s learning capability and stability, 

especially in deep architectures. The choice of Leaky ReLU 

is based on empirical tests, which showed more consistent 

convergence and slightly improved accuracy compared to 

standard ReLU. The Leaky RELU formula is according to 

Eq. (2): 

 

𝑓(𝑥) = max(0.1𝑥. 𝑥 )                 (2) 

 

The SoftMax function calculates the probability associated 

with each output, and this type of function is used in the last 

layer of the network and gives the output probability. So, 

the sum of the probabilities = 1 [9]. The SoftMax formula 

is based on Eq. (3): 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑧𝑖) =  
exp (𝑧𝑖)

∑ exp (𝑧𝑗)𝐾
𝑗=1

       (3) 

 

 

 

The structure of the proposed network is shown in Fig. 3, 

and the details of the proposed model are described in Table 

2. The input signal is fed to the Conv-1 layer with 38 filters, 

generating 38 feature maps; then, Batch-Normalization is 

utilized. The same operations are applied to all four layers 

but with different filter sizes and numbers. Finally, the 

Global average pooling layer is connected to the fully 

connected layer. The multi-path propagation channel is one 

of the main challenges in indoor OWC. A reflected signal 

will have a slight delay and reduce all signal levels except 

the LOS links. However, the signal reaches the Rx through 

different paths, with various delays and attenuation. 

In this paper, we add memory to the CNN network to 

increase the accuracy and efficiency of the system for 

demodulation and distance estimation. We propose to 

employ the information of previous symbols on the current 

signal by adding them to the input signal sequence. 

Fig 2: Some samples of 16-QAM signal 
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Finally, we randomly separate 70% of the training data, 20% 

for test data, and 10% for validation data. 

 

 

2-3- Performance Evaluation and Implementation 

Detail 

In this paper, we have performed demodulation and 

distance estimation for M-QAM (M = 4, 16, 32, 64, 128, 

256) and OOK modulations at 0 to 140 cm (for 29 distances). 

The proposed CNN was implemented for four different 

values of N = 10, 20, 40, and 80, where N represents the 

number of signal samples in each period. In this experiment, 

the batch size is set to 3500, the epoch number ranges from 

100 to 200, and the Adam method is used as the optimizer. 

The network measurement criterion for this work is the 

accuracy of demodulation. All the proposed methods are 

implemented with MATLAB R2021b and executed on a 

computer with an Intel Core i7-4200 CPU @ 1 GHz/8GB 

RAM. 

The choice of these specific parameters was made after 

extensive experimentation to ensure optimal network 

performance. Varying values of N allowed us to observe 

how the number of signal samples affects demodulation 

accuracy, providing insights into the optimal configuration. 

The batch size of 3500 ensured efficient training, and the 

range of epochs (100 to 200) balanced training time with 

performance, preventing overfitting. 

The Adam optimizer facilitated fast and stable convergence, 

handling sparse gradients and adaptive learning rates 

effectively. Despite the modest computational setup, the 

Intel Core i7-4200 CPU and 8GB of RAM were sufficient 

for training and testing the CNN. 

Supplementary tests, including varying modulation 

schemes and distances, adjusting batch sizes, and 

experimenting with optimizers, reinforced our findings 

3- Discussion and Results 

3-1- Discussion 

 

We have to specify that for demodulation and distance 

estimation, we used real normalized data provided by [9]. 

In the data, d is the distance between the LED and PD, and 

it is collected every 5 cm from d = 0 cm to d = 140 cm and 

normalized. This data-set can be helpful for commenting on 

examples of how approaches perform under various 

circumstances. Nonetheless, there are still many research 

topics left to be explored in the VLC system, more 

specifically, concerning the channel modeling. 

Performance can be enhanced when the system is designed 

to incorporate selected machine learning (ML). Therefore, 

using DL, and specifically, the CNN architecture, we 

succeeded in demodulating seven different modulations, 

among which M-QAM (M = 4, 16, 32, 64, 128, 256), and 

OOK in VLC. 

The simulations were carried out in MATLAB; first, 

distance was estimated, and then demodulation was done. 

In order to increase the experiment accuracy, we used 

memory in the CNN for the previous symbols that 

influenced the current symbol. First, the network was 

trained for 32-QAM with a lesser distance using 1D-CNN 

to design the basic classifier. Optimum demodulation 

accuracy of the transmitted information was obtained by 

fine-tuning of the various network parameters. This 

approach aimed to extend the length of the 1D input 

sequence where two previous signals are added to the 

current one, making the input 3-channels (3-ch). 

To analyze the effect of changes in memory and size of the 

input sequence, we trained the proposed network with the 

5-ch, 8-ch, 10-ch, and 12-ch input data arrangements. It is 

worth noting that although explicit experiments with 

controlled SNR values were not conducted, the data-set 

inherently reflects a range of SNR conditions through the 

variation of transmission distances. As distance increases 

Table 2: The parameters of the CNN 

Layers Filter Size Number of Filters 

Conv-1 1×12 38 

Conv-2 1×10 40 

Conv-3 1×10 46 

Conv-4 1×7 46 

Fig 3: The structure of the proposed network 
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from 0 cm to 140 cm, the received signal power decreases, 

effectively reducing the SNR. Also, the data-set is collected 

under real conditions. It is true that for different distances, 

SNR changes, but since the data-set is real, we do not have 

SNR. Last but not least, we examined modulation accuracy 

when the channel is specified with different parameters. In 

order to evaluate the correctness of the discussed CNN-

based demodulation method considering 32-QAM 

modulation, the distance-dependent results are shown in Fig. 

4 for different values of N = 10, 20, 40, 80. This analysis 

likewise shows a clear trend of the modulation accuracy for 

N = 40 outcompeting the others, hence supporting the 

conclusion of [9]. The choice of input sequence length N is 

crucial in balancing demodulation accuracy and real-time 

processing feasibility. While larger values of N (e.g., 40 or 

80) capture more signal context and improve classification 

accuracy, they also increase the computational load and 

inference latency. In contrast, smaller N values (e.g., 10 or 

20) are faster to process but yield lower accuracy, as shown 

in our comparative results. Therefore, N=40 was selected as 

a practical trade-off, offering reliable demodulation and 

acceptable complexity for real-time applications. 

 

 

Fig. 5 shows the demodulation accuracy of 32-QAM with 

distance relation in (d) for N=40 in order to assess the 

influence of memory on the performance. The accuracy is 

much higher when demodulating with more than one 

channel up to 10 channels (10-ch). Also, the probability for 

eradicating the virus is much higher in the early stage of its 

spreading. Coefficients for 32-QAM are N= 40, ch= 10; 

furthermore, experiments showed that. Therefore, the 

simulations are performed for N=40 and ch =10. The 

network training is illustrated based on the demodulation 

accuracy of the CNN demodulation method in Fig. 6.  

Depicted below are the accuracy levels obtained for 

the 16-QAM as well as 32-QAM configurations of the 

classifiers; it is evident that there is better accuracy for the 

16- QAM than the 32- QAM and after achieving a success 

rate of about 75 % after 150 epochs the models exhibit 

steady performance. 

These results clearly will open the potential of the proposed 

CNN-based demodulation technique to improve the 

precision and dependability of VLC systems. It is also 

believed that in the future, one might investigate the usage 

of this method in other forms of modulation and more 

complicated systems and scenarios in OWCs. 

 

 

To show the efficiency, it is necessary to explain that we 

tested different methods to reach the final result, which is 

reported in the article. Here, the main discussion is on the 

effect of memory and distance on demodulation accuracy; 

thus, we can have two types of networks besides the 

proposed method: 

 

1. A network without any information from the last 

symbols. 

2. A network where the distance effect is ignored. 

This network demodulates only at one determined distance, 

and different networks are trained for each distance. In the 

first case, we have a regular and basic network, and the 

results are similar to the CNN-based demodulator 

referenced in [9]. Consequently, the accuracy is lower than 

that achieved by Adaboost, demonstrating the limitations of 

this approach when memory is not considered. 

In the second case, the problem involves training a distance 

estimator before demodulation. This approach requires an 

additional step of accurately estimating the distance before 

demodulating the signal. The challenge here is that the error 

in distance estimation directly affects the symbol 

demodulation accuracy. If the distance estimator introduces 

errors, these errors will compound the demodulation error, 

Fig 4: The demodulation accuracy of CNN versus distance 

"d" in diferent sample points. 

Fig 5: The demodulation accuracy of 32-QAM modulated 

signals versus distance d in: 1ch, 3 ch, 5 ch, 8 ch, 10 ch, 12 ch 

when N = 40. 
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leading to a significant degradation in performance. This 

method highlights the critical nature of accurate distance 

information in achieving high demodulation accuracy. 

To further illustrate the benefits of the proposed method, we 

conducted extensive simulations comparing these network 

types with the proposed approach, which incorporates both 

memory and distance information. The results clearly 

showed that the proposed method outperforms the other two 

types of networks. By including the memory of previous 

symbols, our network effectively mitigates ISI, leading to 

higher accuracy. Additionally, considering the distance 

information, the network adapts better to varying 

conditions, further enhancing performance. 

 

 

 

Moreover, we explored the effect of different memory 

lengths and how they influence the demodulation accuracy. 

Longer memory lengths generally led to better performance 

up to a certain point, beyond which the computational 

complexity increased without significant gains in accuracy. 

This finding suggests an optimal balance between memory 

length and computational efficiency, which is crucial for 

practical implementations. 

Furthermore, the proposed method's robustness was tested 

across various modulation schemes and environmental 

conditions. It consistently demonstrated superior 

performance, underscoring its versatility and reliability. 

The comprehensive analysis and comparison provided in 

the article highlight the significant advancements made by 

incorporating memory and distance information into the 

demodulation process, paving the way for future research 

and development in this field. 

In conclusion, our findings emphasize the importance of 

memory and distance information in achieving high 

demodulation accuracy in visible light communication 

systems. The proposed CNN-based approach substantially 

improves over traditional methods, providing a robust and 

efficient solution for practical VLC applications. Future 

work could focus on further optimizing the network 

parameters and exploring its application to even more 

complex scenarios, ensuring continued progress in this 

rapidly evolving field. 

3-2- Results 

From the results obtained, the demodulation accuracy 

reduces with the order of modulation and distance. In [9], 

the CNN, AdaBoost, DBN classifiers are employed to 

demodulation, and it is identified that AdaBoost was most 

accurate. A comparison between the proposed method and 

AdaBoost regarding demodulation accuracy is illustrated in 

Fig. 7. The analysis proves that improving accuracy can be 

achieved using information of distance and previous 

symbols. It is evident that at a distance of 140 cm, the 

augmentation in the accuracy can be over 50%. This is a big 

leap forward from the earlier procedures. The proposed 

network is extended to other modulations, and the results 

are shown in Fig. 8. As observed here, as the distance 

increases when employing higher-order modulation, the 

number of errors in the demodulation also increases. 

 

 

 

Fig 6: The demodulation accuracy of CNN based method 

with respect to epochs when N = 40 and 10 ch, d= all 

distance. 

Fig 7: The demodulation accuracy of CNN based method 

for 32- QAM. 
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As shown in Fig. 8, the demodulation accuracy of the seven 

modulation schemes is inversely proportional to the 

distance d. Also, in M-QAM type systems, when the 

modulation level increases and for a fixed distance d, 

accuracy decreases even more. This indicates the 

difficulties encountered in ensuring high levels of accuracy 

of VLC systems with higher-order modulations and larger 

distances. This indicates that the proposed method can 

effectively address these problems by making use of 

distance and historical symbol information, which adds to 

the idea that the method can improve VLC system 

performance in real-world applications. This may be an area 

of interest where improved algorithms are sought for 

tackling more complicated problems and modulation types. 

4- Conclusions 

TIn this research, the CNN was suggested in signal 

demodulation of VLC system that reveals its promising 

future. Testing the proposed method with a veritable dataset 

containing seven different modulations and 29 separate 

distances, the investigation of demodulation performance 

was quite accomplished. Other important parameters such 

as distance information were revealed to further improve 

the demodulation BER performance. Therefore, the number 

of inputs was chosen so that the network capacity was 

gradually adjusted to the best possible state. 

Simulation results given in figures also showed that the 

proposed demodulator outperforms the existing 

conventional demodulator by a large margin. For example, 

at 140 cm distance the improvement for demodulating 32-

QAM can go beyond 50%. This big advancement shows 

that integration of distance and historical symbol 

information into demodulation exercise is very efficient. 

Moreover, analyzing the performance of the proposed CNN 

demodulator by applying it to different modulation schemes 

as well as distances, it can be concluded that improved 

performance is achieved. From these results, it can be 

concluded that the method is very flexible and, even when 

placed under extreme conditions, provides a high level of 

accuracy. However, it can be suggested that the future work 

could be done to investigate the further application of this 

approach to the more high-order modulation scenarios or 

the more complicated modulation environments. 

Furthermore, one can incorporate enhanced methods like 

learning rate adaptation and other advanced structures of the 

neural networks, which might result in further enhanced 

levels of demodulating efficiency. The findings of this 

particular study will illuminate other enhanced 

performances of the VLC system and will be helpful in 

improving such technologies as revealed in this research. 
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