Statistical Analysis and Comparison of the Performance of MetaHeuristic Methods Based on their Powerfulness and Effectiveness
Research Areas : Machine learning
Mehrdad Rohani
^{
1
}
(Univerrsity of Birjand)
Hassan Farsi
^{
2
}
Seyed Hamid Zahiri
^{
3
}
(University of Birjand)
Keywords: Effectiveness, Metaheuristic Algorithms, Optimization, Powerfulness, Statistical Analysis.,
Abstract :
In this paper, the performance of metaheuristic algorithms is compared using statistical analysis based on new criteria (powerfulness and effectiveness). Due to the large number of metaheuristic methods reported so far, choosing one of them by researchers has always been challenging. In fact, the user does not know which of these methods are able to solve his complex problem. In this paper, in order to compare the performance of several methods from different categories of metaheuristic methods new criteria are proposed. In fact, by using these criteria, the user is able to choose an effective method for his problem. For this reason, statistical analysis is conducted on each of these methods to clarify the application of each of these methods for the users. Also, powerfulness and effectiveness criteria are defined to compare the performance of the metaheuristic methods to introduce suitable substrate and suitable quantitative parameters for this purpose. The results of these criteria clearly show the ability of each method for different applications and problems.
[1] R. Bellman, "Dynamic Programming", Science, Vol. 153, No. 3731, 1966, pp. 3437.
[2] W. Kuo, V. R. Prasad, F. A. Tillman, and C.L. Hwang, Optimal Reliability Design: Fundamentals and Applications, Cambridge University Press, 2001.
[3] J. A. Snyman, Practical Mathematical Optimization. Springer, 2005.
[4] I. BoussaïD, J. Lepagnot, and P. Siarry, "A Survey on Optimization Metaheuristics", Information Sciences, Vol. 237, 2013, pp. 82117.
[5] A. Sezavar, H. Farsi, and S. Mohamadzadeh, "A Modified Grasshopper Optimization Algorithm Combined with CNN for Content Based Image Retrieval", International Journal of Engineering, Vol. 32, No. 7, 2019, pp. 924930.
[6] A. H. Hosseinian and V. Baradaran, "A MultiObjective MultiAgent Optimization Algorithm for the Community Detection Problem", J. Inform. Syst. Telecommun, Vol. 6, No. 1,2019, pp. 169179.
[7] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization By Simulated Annealing", Science, Vol. 220, No. 4598, 1983, pp. 671680.
[8] J. R. Koza and J. R. Koza, Genetic Programming, On the Programming of Computers :Natural Selection MIT press, 1992.
[9] A. Walker, J. Hallam, and D. Willshaw, "BeeHavior in a Mobile Robot: The Construction of a SelfOrganized Cognitive Map and Its Use in Robot Navigation within a Complex, Natural Environment", IEEE International Conference on Neural Networks, 1993, pp. 14511456.
[10] F. Glover, "Tabu Search for Nonlinear and Parametric Optimization (With Links to Genetic Algorithms)", Discrete Applied Mathematics, Vol. 49, No. 13, 1994, pp. 231255.
[11] J. Kennedy and R. Eberhart, "Particle Swarm Optimization", in Proceedings of ICNN'95International Conference on Neural Networks, 1995, Vol. 4, pp. 19421948.
[12] K. M. Passino, "Biomimicry of Bacterial Foraging for Distributed Optimization and Control", IEEE control systems magazine, Vol. 22, No. 3, 2002, pp. 5267.
[13] D. Simon, "BiogeographyBased Optimization", IEEE Transactions on Evolutionary Computation, Vol. 12, No. 6, 2008, pp. 702713.
[14] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey Wolf Optimizer", Advances in Engineering Software, Vol. 69, 2014, pp. 4661.
[15] S. Mirjalili, "The Ant Lion Optimizer", Advances in Engineering Software, Vol. 83, 2015, pp. 8098.
[16] S. Mirjalili, "Mothflame Optimization Algorithm: A Novel NatureInspired Heuristic Paradigm", KnowledgeBased Systems, Vol. 89, 2015, pp. 228249.
[17] S. Mirjalili "Dragonfly Algorithm: a New MetaHeuristic Optimization Technique for Solving SingleObjective, Discrete, and MultiObjective Problems", Neural Computing and Applications, Vol. 27, No. 4, 2016, pp. 10531073.
[18] S. Mirjalili, S. M. Mirjalili, and A. Hatamlou, "MultiVerse Optimizer: a NatureInspired Algorithm for Global Optimization", Neural Computing and Applications, Vol. 27, No. 2, pp. 495513, 2016.
[19] S. Mirjalili, "SCA: a Sine Cosine Algorithm for Solving Optimization Problems", KnowledgeBased Systems, Vol. 96, 2016, pp. 120133.
[20] S. Mirjalili and A. Lewis, "The Whale Optimization Algorithm", Advances in Engineering Software, Vol. 95, 2016, pp. 5167.
[21] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and S. M. Mirjalili, "Salp Swarm Algorithm: A BioUnspired Optimizer for Engineering Design Problems", Advances in Engineering Software, Vol. 114, 2017, pp. 163191.
[22] S. M. Almufti, "Historical Survey on Metaheuristics Algorithms", International Journal of Scientific World, Vol. 7, No. 1, 2019, pp. 1.
[23] S. Shirke and R. Udayakumar, "Evaluation of Crow Search Algorithm (CSA) for Optimization in Discrete Applications", International Conference on Trends in Electronics and Informatics (ICOEI), 2019, pp. 584589.
[24] M. Dorigo and G. Di Caro, "Ant Colony Optimization: a New MetaHeuristic", in Proceedings of the Congress on Evolutionary ComputationCEC99, Vol. 2, 1999, pp. 14701477.
[25] M. Clerc, Particle Swarm Optimization. John Wiley & Sons, 2010.
[26] J. G. Digalakis and K. G. Margaritis, "On Benchmarking Functions for Genetic Algorithms", International Journal of Computer Mathematics, Vol. 77, No. 4, 2001, pp. 481506.
[27] M. Molga and C. Smutnicki, "Test Functions for Optimization Needs", Test Functions for Optimization Needs, Vol. 101, 2005, pp. 48.
[28] X.S. Yang, "Firefly Algorithm, Stochastic Test Functions and Design Optimisation," International Journal of BioInspired Computation, Vol. 2, No. 2, 2010, pp. 7884.
[29] D. Molina, J. Poyatos, J. Del Ser, S. García, A. Hussain, and F. Herrera, "Comprehensive Taxonomies of Natureand Bioinspired Optimization: Inspiration Versus Algorithmic Behavior, Critical Analysis Recommendations", Cognitive Computation, Vol. 12, No. 5, 2020, pp. 8979339.
Journal of Information Systems and Telecommunication

http://jist.acecr.org ISSN 23221437 / EISSN:23452773 
Statistical Analysis and Comparison of the Performance of MetaHeuristic Methods Based on their Powerfulness and Effectiveness 
Mehrdad Rohani1*, Hassan Farsi1, Seyed Hamid Zahiri1

1.Department of Electronic and Computer Engineering, University of Birjand, Birjand, Iran

Received: 04 May 2021 / Revised: 24 Jul 2021/ Accepted: 24 Aug 2021 
DOI: https://doi.org/10.52547/jist.16067.10.37.49 
Abstract
In this paper, the performance of metaheuristic algorithms is compared using statistical analysis based on new criteria (powerfulness and effectiveness). Due to the large number of metaheuristic methods reported so far, choosing one of them by researchers has always been challenging. In fact, the user does not know which of these methods are able to solve his complex problem. In this paper, in order to compare the performance of several methods from different categories of metaheuristic methods new criteria are proposed. In fact, by using these criteria, the user is able to choose an effective method for his problem.
For this reason, statistical analysis is conducted on each of these methods to clarify the application of each of these methods for the users. Also, powerfulness and effectiveness criteria are defined to compare the performance of the metaheuristic methods to introduce suitable substrate and suitable quantitative parameters for this purpose. The results of these criteria clearly show the ability of each method for different applications and problems.
Keywords: Effectiveness; Metaheuristic Algorithms; Optimization; Powerfulness; Statistical Analysis.