• About Journal

     The Journal of Information Systems and Telecommunication (JIST) accepts and publishes papers containing original researches and/or development results, representing an effective and novel contribution for knowledge in the area of information systems and Telecommunication. Contributions are accepted in the form of Regular papers or Correspondence. Regular papers are the ones with a well-rounded treatment of a problem area, whereas Correspondence focus on a point of a defined problem area. Under the permission of the editorial board, other kinds of papers may be published if they are found to be relevant or of interest to the readers. Responsibility for the content of the papers rests upon the Authors only. The Journal is aimed at not only a national target community, but also international audiences is taken into consideration. For this reason, authors are supposed to write in English.

    This Journal is Published under scientific support of Advanced Information Systems (AIS) Research Group and Digital & Signal Processing Group, ICTRC

    The JIST has taken the decision that abroad authors pay model as an author-pays Open Access (OA) model, effective from the 1st March, 2021 volume, which comes into effect for all new submissions to the journal from this date.

    APC charge update for ONLY Iranian authors, effective 6th June, 2021.

    For further information on Article Processing Charges (APCs) policies, please visit our APC page or contact us infojist@gmail.com. 


    Latest published articles

    • Open Access Article

      1 - Performance Analysis of Hybrid SOM and AdaBoost Classifiers for Diagnosis of Hypertensive Retinopathy
      Wiharto Wiharto Esti Suryani Murdoko Susilo
      Issue 34 , Volume 9 , Spring 2021
      20.1001.1.23221437.2021.9.34.5.2
      The diagnosis of hypertensive retinopathy (CAD-RH) can be made by observing the tortuosity of the retinal vessels. Tortuosity is a feature that is able to show the characteristics of normal or abnormal blood vessels. This study aims to analyze the performance of the CAD Full Text
      The diagnosis of hypertensive retinopathy (CAD-RH) can be made by observing the tortuosity of the retinal vessels. Tortuosity is a feature that is able to show the characteristics of normal or abnormal blood vessels. This study aims to analyze the performance of the CAD-RH system based on feature extraction tortuosity of retinal blood vessels. This study uses a segmentation method based on clustering self-organizing maps (SOM) combined with feature extraction, feature selection, and the ensemble Adaptive Boosting (AdaBoost) classification algorithm. Feature extraction was performed using fractal analysis with the box-counting method, lacunarity with the gliding box method, and invariant moment. Feature selection is done by using the information gain method, to rank all the features that are produced, furthermore, it is selected by referring to the gain value. The best system performance is generated in the number of clusters 2 with fractal dimension, lacunarity with box size 22-29, and invariant moment M1 and M3. Performance in these conditions is able to provide 84% sensitivity, 88% specificity, 7.0 likelihood ratio positive (LR+), and 86% area under the curve (AUC). This model is also better than a number of ensemble algorithms, such as bagging and random forest. Referring to these results, it can be concluded that the use of this model can be an alternative to CAD-RH, where the resulting performance is in a good category. Manuscript Document

    • Open Access Article

      2 - Utilizing Gated Recurrent Units to Retain Long Term Dependencies with Recurrent Neural Network in Text Classification
      Nidhi Chandra Laxmi  Ahuja Sunil Kumar Khatri Himanshu Monga
      Issue 34 , Volume 9 , Spring 2021
      20.1001.1.23221437.2021.9.34.2.9
      The classification of text is one of the key areas of research for natural language processing. Most of the organizations get customer reviews and feedbacks for their products for which they want quick reviews to action on them. Manual reviews would take a lot of time a Full Text
      The classification of text is one of the key areas of research for natural language processing. Most of the organizations get customer reviews and feedbacks for their products for which they want quick reviews to action on them. Manual reviews would take a lot of time and effort and may impact their product sales, so to make it quick these organizations have asked their IT to leverage machine learning algorithms to process such text on a real-time basis. Gated recurrent units (GRUs) algorithms which is an extension of the Recurrent Neural Network and referred to as gating mechanism in the network helps provides such mechanism. Recurrent Neural Networks (RNN) has demonstrated to be the main alternative to deal with sequence classification and have demonstrated satisfactory to keep up the information from past outcomes and influence those outcomes for performance adjustment. The GRU model helps in rectifying gradient problems which can help benefit multiple use cases by making this model learn long-term dependencies in text data structures. A few of the use cases that follow are – sentiment analysis for NLP. GRU with RNN is being used as it would need to retain long-term dependencies. This paper presents a text classification technique using a sequential word embedding processed using gated recurrent unit sigmoid function in a Recurrent neural network. This paper focuses on classifying text using the Gated Recurrent Units method that makes use of the framework for embedding fixed size, matrix text. It helps specifically inform the network of long-term dependencies. We leveraged the GRU model on the movie review dataset with a classification accuracy of 87%. Manuscript Document

    • Open Access Article

      3 - A New Game Theory-Based Algorithm for Target Coverage in Directional Sensor Networks
      Elham Golrasan marzieh varposhti
      Issue 34 , Volume 9 , Spring 2021
      20.1001.1.23221437.2021.9.34.3.0
      One of the challenging problems in directional sensor networks is maximizing target coverage while minimizing the amount of energy consumption. Considering the high redundancy in dense directional sensor networks, it is possible to preserve energy and enhance coverage q Full Text
      One of the challenging problems in directional sensor networks is maximizing target coverage while minimizing the amount of energy consumption. Considering the high redundancy in dense directional sensor networks, it is possible to preserve energy and enhance coverage quality by turning off redundant sensors and adjusting the direction of the active sensor nodes. In this paper, we address the problem of maximizing network lifetime with adjustable ranges (MNLAR) and propose a new game theory-based algorithm in which sensor nodes try to adjust their working direction and sensing range in a distributed manner to achieve the desired coverage. For this purpose, we formulate this problem as a multiplayer repeated game in which each sensor as a player tries to maximize its utility function which is designed to capture the tradeoff between target coverage and energy consumption. To achieve an efficient action profile, we present a distributed payoff-based learning algorithm. The performance of the proposed algorithm is evaluated via simulations and compared to some existing methods. The simulation results demonstrate the performance of the proposed algorithm and its superiority over previous approaches in terms of network lifetime. Manuscript Document

    • Open Access Article

      4 - Optimal Clustering-based Routing Protocol Using Self-Adaptive Multi-Objective TLBO For Wireless Sensor Network
      Ali Sedighimanesh Hessam  Zandhessami Mahmood  Alborzi Mohammadsadegh  Khayyatian
      Issue 34 , Volume 9 , Spring 2021
      20.1001.1.23221437.2021.9.34.1.8
      Wireless sensor networks consist of many fixed or mobile, non-rechargeable, low-cost, and low-consumption nodes. Energy consumption is one of the most important challenges due to the non-rechargeability or high cost of sensor nodes. Hence, it is of great importance to a Full Text
      Wireless sensor networks consist of many fixed or mobile, non-rechargeable, low-cost, and low-consumption nodes. Energy consumption is one of the most important challenges due to the non-rechargeability or high cost of sensor nodes. Hence, it is of great importance to apply some methods to reduce the energy consumption of sensors. The use of clustering-based routing is a method that reduces the energy consumption of sensors. In the present article, the Self-Adaptive Multi-objective TLBO (SAMTLBO) algorithm is applied to select the optimal cluster headers. After this process, the sensors become the closest components to cluster headers and send the data to their cluster headers. Cluster headers receive, aggregate, and send data to the sink in multiple steps using the TLBO-TS hybrid algorithm that reduces the energy consumption of the cluster heads when sending data to the sink and, ultimately, an increase in the wireless sensor network’s lifetime. The simulation results indicate that our proposed protocol (OCRP) show better performance by 35%, 17%, and 12% compared to ALSPR, CRPD, and COARP algorithms, respectively. Conclusion: Due to the limited energy of sensors, the use of meta-heuristic methods in clustering and routing improves network performance and increases the wireless sensor network's lifetime. Manuscript Document

    • Open Access Article

      5 - Improvement of Firefly Algorithm using Particle Swarm Optimization and Gravitational Search Algorithm
      Mahdi Tourani
      Issue 34 , Volume 9 , Spring 2021
      20.1001.1.23221437.2021.9.34.6.3
      Evolutionary algorithms are among the most powerful algorithms for optimization, Firefly algorithm (FA) is one of them that inspired by nature. It is an easily implementable, robust, simple and flexible technique. On the other hand, Integration of this algorithm with ot Full Text
      Evolutionary algorithms are among the most powerful algorithms for optimization, Firefly algorithm (FA) is one of them that inspired by nature. It is an easily implementable, robust, simple and flexible technique. On the other hand, Integration of this algorithm with other algorithms, can be improved the performance of FA. Particle Swarm Optimization (PSO) and Gravitational Search Algorithm (GSA) are suitable and effective for integration with FA. Some method and operation in GSA and PSO can help to FA for fast and smart searching. In one version of the Gravitational Search Algorithm (GSA), selecting the K-best particles with bigger mass, and examining its effect on other masses has a great help for achieving the faster and more accurate in optimal answer. As well as, in Particle Swarm Optimization (PSO), the candidate answers for solving optimization problem, are guided by local best position and global best position to achieving optimal answer. These operators and their combination with the firefly algorithm (FA) can improve the performance of the search algorithm. This paper intends to provide models for improvement firefly algorithm using GSA and PSO operation. For this purpose, 5 scenarios are defined and then, their models are simulated using MATLAB software. Finally, by reviewing the results, It is shown that the performance of introduced models are better than the standard firefly algorithm. Manuscript Document

    • Open Access Article

      6 - The Development of a Hybrid Error Feedback Model for Sales Forecasting
      Mehdi Farrokhbakht Foumani Sajad Moazami Goudarzi
      Issue 34 , Volume 9 , Spring 2021
      20.1001.1.23221437.2021.9.34.7.4
      Sales forecasting is one of the significant issues in the industrial and service sector which can lead to facilitated management decisions and reduce the lost values in case of being dealt with properly. Also sales forecasting is one of the complicated problems in analy Full Text
      Sales forecasting is one of the significant issues in the industrial and service sector which can lead to facilitated management decisions and reduce the lost values in case of being dealt with properly. Also sales forecasting is one of the complicated problems in analyzing time series and data mining due to the number of intervening parameters. Various models were presented on this issue and each one found acceptable results. However, developing the methods in this study is still considered by researchers. In this regard, the present study provided a hybrid model with error feedback for sales forecasting. In this study, forecasting was conducted using a supervised learning method. Then, the remaining values (model error) were specified and the error values were forecasted using another learning method. Finally, two trained models were combined together and consecutively used for sales forecasting. In other words, first the forecasting was conducted and then the error rate was determined by the second model. The total forecasting and model error indicated the final forecasting. The computational results obtained from numerical experiments indicated the superiority of the proposed hybrid method performance over the common models in the available literature and reduced the indicators related to forecasting error. Manuscript Document

    • Open Access Article

      7 - A New Power Control Algorithm in MMSE Receiver for D2D Underlying Massive MIMO System
      Faezeh  Heydari Saeed Ghazi-Maghrebi Ali Shahzadi Mohammad Jalal  Rastegar Fatemi
      Issue 34 , Volume 9 , Spring 2021
      20.1001.1.23221437.2021.9.34.4.1
      Device to device (D2D) underlying massive MIMO cellular network is a robust deployment which enables network to enhance its throughput. It also improves services and applications for the proximity-based wireless communication. However, an important challenge in such dep Full Text
      Device to device (D2D) underlying massive MIMO cellular network is a robust deployment which enables network to enhance its throughput. It also improves services and applications for the proximity-based wireless communication. However, an important challenge in such deployment is mutual interference. Interference, in the uplink spectrum, reusing the same resource with cellular user, is caused by D2D users. In this paper, we study a distributed power control (DPC) algorithm, using minimum mean square error (MMSE) filter in receiver, to mitigate the produced interference in this deployment scenario. For the DPC algorithm, employing the coverage probability of D2D links, an optimal power control approach is proposed, which maximizes the spectral efficiency of D2D links. Using this modeling approach, it is possible to derive closed-form analytical expressions for the coverage probabilities and ergodic spectral efficiency, which give insight into how the various network parameters interact and affect the link.‎ Also, the DPC algorithm is modeled by stochastic geometry and receiver filter is designed by estimation theory that a new structure in this robust network is an approach to improve spectral efficiency. Simulation results illustrate enhancing coverage probability performance of D2D links in term of the target (signal to interference ratio) SIR with respect to different receiver filter and other parameters which are existing in D2D links. Manuscript Document
    Most Viewed Articles

    • Open Access Article

      1 - Instance Based Sparse Classifier Fusion for Speaker Verification
      Mohammad Hasheminejad Hassan Farsi
      Issue 15 , Volume 4 , Summer 2016
      This paper focuses on the problem of ensemble classification for text-independent speaker verification. Ensemble classification is an efficient method to improve the performance of the classification system. This method gains the advantage of a set of expert classifiers Full Text
      This paper focuses on the problem of ensemble classification for text-independent speaker verification. Ensemble classification is an efficient method to improve the performance of the classification system. This method gains the advantage of a set of expert classifiers. A speaker verification system gets an input utterance and an identity claim, then verifies the claim in terms of a matching score. This score determines the resemblance of the input utterance and pre-enrolled target speakers. Since there is a variety of information in a speech signal, state-of-the-art speaker verification systems use a set of complementary classifiers to provide a reliable decision about the verification. Such a system receives some scores as input and takes a binary decision: accept or reject the claimed identity. Most of the recent studies on the classifier fusion for speaker verification used a weighted linear combination of the base classifiers. The corresponding weights are estimated using logistic regression. Additional researches have been performed on ensemble classification by adding different regularization terms to the logistic regression formulae. However, there are missing points in this type of ensemble classification, which are the correlation of the base classifiers and the superiority of some base classifiers for each test instance. We address both problems, by an instance based classifier ensemble selection and weight determination method. Our extensive studies on NIST 2004 speaker recognition evaluation (SRE) corpus in terms of EER, minDCF and minCLLR show the effectiveness of the proposed method. Manuscript Document

    • Open Access Article

      2 - Privacy Preserving Big Data Mining: Association Rule Hiding
      Golnar Assadat  Afzali shahriyar mohammadi
      Issue 14 , Volume 4 , Spring 2016
      Data repositories contain sensitive information which must be protected from unauthorized access. Existing data mining techniques can be considered as a privacy threat to sensitive data. Association rule mining is one of the utmost data mining techniques which tries to Full Text
      Data repositories contain sensitive information which must be protected from unauthorized access. Existing data mining techniques can be considered as a privacy threat to sensitive data. Association rule mining is one of the utmost data mining techniques which tries to cover relationships between seemingly unrelated data in a data base.. Association rule hiding is a research area in privacy preserving data mining (PPDM) which addresses a solution for hiding sensitive rules within the data problem. Many researches have be done in this area, but most of them focus on reducing undesired side effect of deleting sensitive association rules in static databases. However, in the age of big data, we confront with dynamic data bases with new data entrance at any time. So, most of existing techniques would not be practical and must be updated in order to be appropriate for these huge volume data bases. In this paper, data anonymization technique is used for association rule hiding, while parallelization and scalability features are also embedded in the proposed model, in order to speed up big data mining process. In this way, instead of removing some instances of an existing important association rule, generalization is used to anonymize items in appropriate level. So, if necessary, we can update important association rules based on the new data entrances. We have conducted some experiments using three datasets in order to evaluate performance of the proposed model in comparison with Max-Min2 and HSCRIL. Experimental results show that the information loss of the proposed model is less than existing researches in this area and this model can be executed in a parallel manner for less execution time Manuscript Document

    • Open Access Article

      3 - Node Classification in Social Network by Distributed Learning Automata
      Ahmad Rahnama Zadeh meybodi meybodi Masoud Taheri Kadkhoda
      Issue 18 , Volume 5 , Spring 2017
      The aim of this article is improving the accuracy of node classification in social network using Distributed Learning Automata (DLA). In the proposed algorithm using a local similarity measure, new relations between nodes are created, then the supposed graph is partitio Full Text
      The aim of this article is improving the accuracy of node classification in social network using Distributed Learning Automata (DLA). In the proposed algorithm using a local similarity measure, new relations between nodes are created, then the supposed graph is partitioned according to the labeled nodes and a network of Distributed Learning Automata is corresponded on each partition. In each partition the maximal spanning tree is determined using DLA. Finally nodes are labeled according to the rewards of DLA. We have tested this algorithm on three real social network datasets, and results show that the expected accuracy of presented algorithm is achieved. Manuscript Document

    • Open Access Article

      4 - COGNISON: A Novel Dynamic Community Detection Algorithm in Social Network
      Hamideh Sadat Cheraghchi Ali Zakerolhossieni
      Issue 14 , Volume 4 , Spring 2016
      The problem of community detection has a long tradition in data mining area and has many challenging facet, especially when it comes to community detection in time-varying context. While recent studies argue the usability of social science disciplines for modern social Full Text
      The problem of community detection has a long tradition in data mining area and has many challenging facet, especially when it comes to community detection in time-varying context. While recent studies argue the usability of social science disciplines for modern social network analysis, we present a novel dynamic community detection algorithm called COGNISON inspired mainly by social theories. To be specific, we take inspiration from prototype theory and cognitive consistency theory to recognize the best community for each member by formulating community detection algorithm by human analogy disciplines. COGNISON is placed in representative based algorithm category and hints to further fortify the pure mathematical approach to community detection with stabilized social science disciplines. The proposed model is able to determine the proper number of communities by high accuracy in both weighted and binary networks. Comparison with the state of art algorithms proposed for dynamic community discovery in real datasets shows higher performance of this method in different measures of Accuracy, NMI, and Entropy for detecting communities over times. Finally our approach motivates the application of human inspired models in dynamic community detection context and suggest the fruitfulness of the connection of community detection field and social science theories to each other. Manuscript Document

    • Open Access Article

      5 - A Bio-Inspired Self-configuring Observer/ Controller for Organic Computing Systems
      Ali Tarihi haghighi haghighi feridon Shams
      Issue 15 , Volume 4 , Summer 2016
      The increase in the complexity of computer systems has led to a vision of systems that can react and adapt to changes. Organic computing is a bio-inspired computing paradigm that applies ideas from nature as solutions to such concerns. This bio-inspiration leads to the Full Text
      The increase in the complexity of computer systems has led to a vision of systems that can react and adapt to changes. Organic computing is a bio-inspired computing paradigm that applies ideas from nature as solutions to such concerns. This bio-inspiration leads to the emergence of life-like properties, called self-* in general which suits them well for pervasive computing. Achievement of these properties in organic computing systems is closely related to a proposed general feedback architecture, called the observer/controller architecture, which supports the mentioned properties through interacting with the system components and keeping their behavior under control. As one of these properties, self-configuration is desirable in the application of organic computing systems as it enables by enabling the adaptation to environmental changes. However, the adaptation in the level of architecture itself has not yet been studied in the literature of organic computing systems. This limits the achievable level of adaptation. In this paper, a self-configuring observer/controller architecture is presented that takes the self-configuration to the architecture level. It enables the system to choose the proper architecture from a variety of possible observer/controller variants available for a specific environment. The validity of the proposed architecture is formally demonstrated. We also show the applicability of this architecture through a known case study. Manuscript Document

    • Open Access Article

      6 - Publication Venue Recommendation Based on Paper’s Title and Co-authors Network
      Ramin Safa Seyed Abolghassem Mirroshandel Soroush Javadi Mohammad Azizi
      Issue 21 , Volume 6 , Winter 2018
      Information overload has always been a remarkable topic in scientific researches, and one of the available approaches in this field is employing recommender systems. With the spread of these systems in various fields, studies show the need for more attention to applying Full Text
      Information overload has always been a remarkable topic in scientific researches, and one of the available approaches in this field is employing recommender systems. With the spread of these systems in various fields, studies show the need for more attention to applying them in scientific applications. Applying recommender systems to scientific domain, such as paper recommendation, expert recommendation, citation recommendation and reviewer recommendation, are new and developing topics. With the significant growth of the number of scientific events and journals, one of the most important issues is choosing the most suitable venue for publishing papers, and the existence of a tool to accelerate this process is necessary for researchers. Despite the importance of these systems in accelerating the publication process and decreasing possible errors, this problem has been less studied in related works. So in this paper, an efficient approach will be suggested for recommending related conferences or journals for a researcher’s specific paper. In other words, our system will be able to recommend the most suitable venues for publishing a written paper, by means of social network analysis and content-based filtering, according to the researcher’s preferences and the co-authors’ publication history. The results of evaluation using real-world data show acceptable accuracy in venue recommendations. Manuscript Document

    • Open Access Article

      7 - The Surfer Model with a Hybrid Approach to Ranking the Web Pages
      Javad Paksima - -
      Issue 15 , Volume 4 , Summer 2016
      Users who seek results pertaining to their queries are at the first place. To meet users’ needs, thousands of webpages must be ranked. This requires an efficient algorithm to place the relevant webpages at first ranks. Regarding information retrieval, it is highly impor Full Text
      Users who seek results pertaining to their queries are at the first place. To meet users’ needs, thousands of webpages must be ranked. This requires an efficient algorithm to place the relevant webpages at first ranks. Regarding information retrieval, it is highly important to design a ranking algorithm to provide the results pertaining to user’s query due to the great deal of information on the World Wide Web. In this paper, a ranking method is proposed with a hybrid approach, which considers the content and connections of pages. The proposed model is a smart surfer that passes or hops from the current page to one of the externally linked pages with respect to their content. A probability, which is obtained using the learning automata along with content and links to pages, is used to select a webpage to hop. For a transition to another page, the content of pages linked to it are used. As the surfer moves about the pages, the PageRank score of a page is recursively calculated. Two standard datasets named TD2003 and TD2004 were used to evaluate and investigate the proposed method. They are the subsets of dataset LETOR3. The results indicated the superior performance of the proposed approach over other methods introduced in this area. Manuscript Document

    • Open Access Article

      8 - Safe Use of the Internet of Things for Privacy Enhancing
      hojatallah hamidi
      Issue 15 , Volume 4 , Summer 2016
      New technologies and their uses have always had complex economic, social, cultural, and legal implications, with accompanying concerns about negative consequences. So it will probably be with the IoT and their use of data and attendant location privacy concerns. It must Full Text
      New technologies and their uses have always had complex economic, social, cultural, and legal implications, with accompanying concerns about negative consequences. So it will probably be with the IoT and their use of data and attendant location privacy concerns. It must be recognized that management and control of information privacy may not be sufficient according to traditional user and public preferences. Society may need to balance the benefits of increased capabilities and efficiencies of the IoT against a possibly inevitably increased visibility into everyday business processes and personal activities. Much as people have come to accept increased sharing of personal information on the Web in exchange for better shopping experiences and other advantages, they may be willing to accept increased prevalence and reduced privacy of information. Because information is a large component of IoT information, and concerns about its privacy are critical to widespread adoption and confidence, privacy issues must be effectively addressed. The purpose of this paper is which looks at five phases of information flow, involving sensing, identification, storage, processing, and sharing of this information in technical, social, and legal contexts, in the IoT and three areas of privacy controls that may be considered to manage those flows, will be helpful to practitioners and researchers when evaluating the issues involved as the technology advances. Manuscript Document

    • Open Access Article

      9 - DBCACF: A Multidimensional Method for Tourist Recommendation Based on Users’ Demographic, Context and Feedback
      Maral Kolahkaj Ali Harounabadi Alireza Nikravan shalmani Rahim Chinipardaz
      Issue 24 , Volume 6 , Autumn 2018
      By the advent of some applications in the web 2.0 such as social networks which allow the users to share media, many opportunities have been provided for the tourists to recognize and visit attractive and unfamiliar Areas-of-Interest (AOIs). However, finding the appropr Full Text
      By the advent of some applications in the web 2.0 such as social networks which allow the users to share media, many opportunities have been provided for the tourists to recognize and visit attractive and unfamiliar Areas-of-Interest (AOIs). However, finding the appropriate areas based on user’s preferences is very difficult due to some issues such as huge amount of tourist areas, the limitation of the visiting time, and etc. In addition, the available methods have yet failed to provide accurate tourist’s recommendations based on geo-tagged media because of some problems such as data sparsity, cold start problem, considering two users with different habits as the same (symmetric similarity), and ignoring user’s personal and context information. Therefore, in this paper, a method called “Demographic-Based Context-Aware Collaborative Filtering” (DBCACF) is proposed to investigate the mentioned problems and to develop the Collaborative Filtering (CF) method with providing personalized tourist’s recommendations without users’ explicit requests. DBCACF considers demographic and contextual information in combination with the users' historical visits to overcome the limitations of CF methods in dealing with multi- dimensional data. In addition, a new asymmetric similarity measure is proposed in order to overcome the limitations of symmetric similarity methods. The experimental results on Flickr dataset indicated that the use of demographic and contextual information and the addition of proposed asymmetric scheme to the similarity measure could significantly improve the obtained results compared to other methods which used only user-item ratings and symmetric measures. Manuscript Document

    • Open Access Article

      10 - Promote Mobile Banking Services by using National Smart Card Capabilities and NFC Technology
      Reza Vahedi Sayed Esmaeail Najafi Farhad Hosseinzadeh Lotfi
      Issue 15 , Volume 4 , Summer 2016
      By the mobile banking system and install an application on the mobile phone can be done without visiting the bank and at any hour of the day, get some banking operations such as account balance, transfer funds and pay bills did limited. The second password bank account Full Text
      By the mobile banking system and install an application on the mobile phone can be done without visiting the bank and at any hour of the day, get some banking operations such as account balance, transfer funds and pay bills did limited. The second password bank account card, the only security facility predicted for use mobile banking systems and financial transactions. That this alone cannot create reasonable security and the reason for greater protection and prevent the theft and misuse of citizens’ bank accounts is provide banking services by the service limits. That by using NFC (Near Field Communication) technology can identity and biometric information and Key pair stored on the smart card chip be exchanged with mobile phone and mobile banking system. And possibility of identification and authentication and also a digital signature created documents. And thus to enhance the security and promote mobile banking services. This research, the application and tool library studies and the opinion of seminary experts of information technology and electronic banking and analysis method Dematel is examined. And aim to investigate possibility Promote mobile banking services by using national smart card capabilities and NFC technology to overcome obstacles and risks that are mentioned above. Obtained Results, confirmed the hypothesis of the research and show that by implementing the so-called solutions in the banking system of Iran. Manuscript Document
    Upcoming Articles
  • Email
    infojist@gmail.com
    Address
    No.5, Saeedi Alley, Kalej Intersection., Enghelab Ave., Tehran, Iran.
    Phone
    +98 21 88930150

    Search

    Statistics

    Number of Issues 9
    Count of Volumes 33
    Printed Articles 244
    Number of Authors 3438
    Article Views 435803
    Article Downloads 81710
    Number of Submitted Articles 1010
    Number of Rejected Articles 22
    Number of Accepted Articles 260
    Admission Time(Day) 207
    Reviewer Count 775