List of subject articles Speech Processing


    • Open Access Article

      1 - Long-Term Spectral Pseudo-Entropy (LTSPE): A New Robust Feature for Speech Activity Detection
      Mohammad Rasoul  kahrizi Seyed jahanshah kabudian
      Speech detection systems are known as a type of audio classifier systems which are used to recognize, detect or mark parts of an audio signal including human speech. Applications of these types of systems include speech enhancement, noise cancellation, identification, r Full Text
      Speech detection systems are known as a type of audio classifier systems which are used to recognize, detect or mark parts of an audio signal including human speech. Applications of these types of systems include speech enhancement, noise cancellation, identification, reducing the size of audio signals in communication and storage, and many other applications. Here, a novel robust feature named Long-Term Spectral Pseudo-Entropy (LTSPE) is proposed to detect speech and its purpose is to improve performance in combination with other features, increase accuracy and to have acceptable performance. To this end, the proposed method is compared to other new and well-known methods of this context in two different conditions, with uses a well-known speech enhancement algorithm to improve the quality of audio signals and without using speech enhancement algorithm. In this research, the MUSAN dataset has been used, which includes a large number of audio signals in the form of music, speech and noise. Also various known methods of machine learning have been used. As well as Criteria for measuring accuracy and error in this paper are the criteria for F-Score and Equal-Error Rate (EER) respectively. Experimental results on MUSAN dataset show that if our proposed feature LTSPE is combined with other features, the performance of the detector is improved. Moreover, this feature has higher accuracy and lower error compared to similar ones. Manuscript Document
    • Open Access Article

      2 - A New VAD Algorithm using Sparse Representation in Spectro-Temporal Domain
      Mohadese  Eshaghi Farbod Razzazi Alireza Behrad
      This paper proposes two algorithms for Voice Activity Detection (VAD) based on sparse representation in spectro-temporal domain. The first algorithm was made using two-dimensional STRF (Spectro-Temporal Response Field) space based on sparse representation. Dictionaries Full Text
      This paper proposes two algorithms for Voice Activity Detection (VAD) based on sparse representation in spectro-temporal domain. The first algorithm was made using two-dimensional STRF (Spectro-Temporal Response Field) space based on sparse representation. Dictionaries with different atomic sizes and two dictionary learning methods were investigated in this approach. This algorithm revealed good results at high SNRs (signal-to-noise ratio). The second algorithm, whose approach is more complicated, suggests a speech detector using the sparse representation in four-dimensional STRF space. Due to the large volume of STRF's four-dimensional space, this space was divided into cubes, with dictionaries made for each cube separately by NMF (non-negative matrix factorization) learning algorithm. Simulation results were presented to illustrate the effectiveness of our new VAD algorithms. The results revealed that the achieved performance was 90.11% and 91.75% under -5 dB SNR in white and car noise respectively, outperforming most of the state-of-the-art VAD algorithms. Manuscript Document