• Home
  • Mohammad Hasheminejad
    • List of Articles Mohammad Hasheminejad

      • Open Access Article

        1 - Fast Automatic Face Recognition from Single Image per Person Using GAW-KNN
        Hassan Farsi Mohammad Hasheminejad
        Real time face recognition systems have several limitations such as collecting features. One training sample per target means less feature extraction techniques are available to use. To obtain an acceptable accuracy, most of face recognition algorithms need more than on Full Text
        Real time face recognition systems have several limitations such as collecting features. One training sample per target means less feature extraction techniques are available to use. To obtain an acceptable accuracy, most of face recognition algorithms need more than one training sample per target. In these applications, accuracy of recognition dramatically reduces for the case of one training sample per target face image because of head rotation and variation in illumination state. In this paper, a new hybrid face recognition method by using single image per person is proposed, which is robust against illumination variations. To achieve robustness against head variations, a rotation detection and compensation stage is added. This method is called Weighted Graphs and PCA (WGPCA). It uses harmony of face components to extract and normalize features, and genetic algorithm with a training set is used to learn the most useful features and real-valued weights associated to individual attributes in the features. The k-nearest neighbor algorithm is applied to classify new faces based on their weighted features from the templates of the training set. Each template contains the corrected distances (Graphs) of different points on the face components and the results of Principal Component Analysis (PCA) applied to the output of face detection rectangle. The proposed hybrid algorithm is trained using MATLAB software to determine best features and their associated weights and is then implemented by using delphi XE2 programming environment to recognize faces in real time. The main advantage of this algorithm is the capability of recognizing the face by only one picture in real time. The obtained results of the proposed technique on FERET database show that the accuracy and effectiveness of the proposed algorithm. Manuscript Document
      • Open Access Article

        2 - Instance Based Sparse Classifier Fusion for Speaker Verification
        Mohammad Hasheminejad Hassan Farsi
        This paper focuses on the problem of ensemble classification for text-independent speaker verification. Ensemble classification is an efficient method to improve the performance of the classification system. This method gains the advantage of a set of expert classifiers Full Text
        This paper focuses on the problem of ensemble classification for text-independent speaker verification. Ensemble classification is an efficient method to improve the performance of the classification system. This method gains the advantage of a set of expert classifiers. A speaker verification system gets an input utterance and an identity claim, then verifies the claim in terms of a matching score. This score determines the resemblance of the input utterance and pre-enrolled target speakers. Since there is a variety of information in a speech signal, state-of-the-art speaker verification systems use a set of complementary classifiers to provide a reliable decision about the verification. Such a system receives some scores as input and takes a binary decision: accept or reject the claimed identity. Most of the recent studies on the classifier fusion for speaker verification used a weighted linear combination of the base classifiers. The corresponding weights are estimated using logistic regression. Additional researches have been performed on ensemble classification by adding different regularization terms to the logistic regression formulae. However, there are missing points in this type of ensemble classification, which are the correlation of the base classifiers and the superiority of some base classifiers for each test instance. We address both problems, by an instance based classifier ensemble selection and weight determination method. Our extensive studies on NIST 2004 speaker recognition evaluation (SRE) corpus in terms of EER, minDCF and minCLLR show the effectiveness of the proposed method. Manuscript Document