A Holistic Approach to Stress Identification: Integrating Questionnaires and Physiological Signals through Machine Learning
Subject Areas : Machine learning
Hemlata Ohal
1
*
,
Mrunal Fatangare
2
1 - Vishwanath Karad MIT World Peace University
2 - Dr. Vishwanath Karad MIT World Peace University
Keywords: Stress identification, PPG, Age-specific assessment, Data preprocessing, Feature extraction, Classification techniques, Stress assessment.,
Abstract :
This research project presents a comprehensive methodology for stress identification by combining subjective self-report data and objective physiological signals. The proposed system employs a carefully designed questionnaire, tailored to different age groups, to enhance accuracy in stress assessment. Subjects respond to the questionnaire, providing valuable insights into their emotional well-being. Subsequently, physiological data is collected using an infrared (IR) sensor positioned beneath the wrist, close to the artery. The pulse data obtained is meticulously converted into a CSV file, allowing for efficient preprocessing. The preprocessing phase ensures the integrity of the data, preparing it for machine learning (ML) analysis. The study harnesses ML techniques, specifically SVM (Support Vector Machines) & KNN (K-Nearest Neighbors), to classify stress levels based on the pre-processed data. Through feature extraction, relevant patterns are identified, contributing to the accurate characterization of stress states. This integrative approach offers a robust framework for stress assessment, taking into account both subjective and physiological dimensions.
Results demonstrate promising accuracy levels: Support Vector Machine (SVM) Reached a level of precision of 0.98 (+/- 0.20), Decision Tree showed 0.93 (+/- 0.30), and K-Nearest Neighbors (KNN) reached 0.88 (+/- 0.44). These findings underscore the effectiveness of the proposed methodology in accurately identifying stress levels. Integrating subjective insights with objective physiological data not only enhances stress identification but also offers a comprehension of the intricate correlation between mental states and physiological reactions. This comprehensive strategy holds substantial implications across diverse domains such as healthcare, psychology, and human-computer interaction.
[1] A. Alberdi et al., "Towards an automatic early stress detection system for office environments based on multimodal measurements: A review," J. Biomed. Inform., vol. 59, pp. 49-75, 2016.
[2] H. Selye, "Stress and the general adaptation syndrome," Br. Med. J., vol. 1, no. 4667, pp. 1383-1392, 1950.
[3] S. Cohen et al., "Psychological stress and disease," JAMA, vol. 298, no. 14, pp. 1685-1687, 2007.
[4] Jain, A. K., Duin, R. P. W., & Mao, J. (2000). Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 4-37.
[5] R. Mukkamala et al., "Toward ubiquitous blood pressure monitoring via pulse transit time: Theory and practice," IEEE Trans. Biomed. Eng., vol. 62, no. 8, pp. 1879-1901, 2015.
[6] C. Cortes and V. Vapnik, "Support-vector networks," Mach. Learn., vol. 20, no. 3, pp. 273-297, 1995.
[7] T. Cover and P. Hart, "Nearest neighbor pattern classification," IEEE Trans. Inf. Theory, vol. 13, no. 1, pp. 21-27, 1967.
[8] L. I. Pearlin and C. Schooler, "The structure of coping," J. Health Soc. Behav., vol. 19, no. 1, pp. 2-21, 1978.
[9] J. Allen, "Photoplethysmography and its application in clinical physiological measurement," Physiol. Meas., vol. 28, no. 3, pp. R1-R39, 2007.
[10] A. Savitzky and M. J. E. Golay, "Smoothing and differentiation of data by simplified least squares procedures," Anal. Chem., vol. 36, no. 8, pp. 1627-1639, 1964.
[11] S. Khalid et al., "A survey of feature selection and feature extraction techniques in machine learning," in Proc. IEEE Sci. Inf. Conf., 2014, pp. 372-378.
[12] C. Setz et al., "Discriminating stress from cognitive load using a wearable EDA device," IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 2, pp. 410-417, 2010.
[13] Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24(4), 385-396. DOI: 10.2307/2136404.
[14] Dhabhar, F. S. (2018). The short-term stress response—Mother nature's mechanism for enhancing protection and performance under conditions of threat, challenge, and opportunity. Frontiers in Neuroendocrinology, 49, 175-192. DOI: 10.1016/j.yfrne.2018.03.004.
[15] Epel, E. S., Blackburn, E. H., Lin, J., Dhabhar, F. S., Adler, N. E., Morrow, J. D., & Cawthon, R. M. (2004). Accelerated telomere shortening in response to life stress. Proceedings of the National Academy of Sciences, 101(49), 17312-17315. DOI: 10.1073/pnas.0407162101.
[16] Hebert, S., Lupien, S. J., & McEwen, B. S. (2009). Meaney MJ. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10(6), 434-445. DOI: 10.1038/nrn2639.
[17] Kirschbaum, C., & Hellhammer, D. H. (1994). Salivary cortisol in psychoneuroendocrine research: Recent developments and applications. Psychoneuroendocrinology, 19(4), 313-333. DOI: 10.1016/0306-4530(94)90013-2.
[18] Carstensen, L. L. (1995). Evidence for a life-span theory of socioemotional selectivity. Current Directions in Psychological Science, 4(5), 151-156.
[19] McEwen, B. S. (1998). Stress, adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840(1), 33-44. DOI: 10.1111/j.1749-6632.1998.tb09546.x.
[20] McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87(3), 873-904. DOI: 10.1152/physrev.00041.2006.
[21] Sapolsky, R. M. (2000). Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Archives of General Psychiatry, 57(10), 925-935. DOI: 10.1001/archpsyc.57.10.925.
[22] Charles, S. T., & Carstensen, L. L. (2010). Social and emotional aging. Annual Review of Psychology, 61, 383-409.
[23] Seeman, T. E., Singer, B. H., Rowe, J. W., Horwitz, R. I., & McEwen, B. S. (1997). Price of adaptation--allostatic load and its health consequences. MacArthur studies of successful aging. Archives of Internal Medicine, 157(19), 2259-2268. DOI: 10.1001/archinte.1997.00440400111013.
[24] Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion regulation and dysregulation. Journal of Affective Disorders, 61(3), 201-216.
[25] Steptoe, A., & Kivimäki, M. (2012). Stress and cardiovascular disease. Nature Reviews Cardiology, 9(6), 360-370. DOI: 10.1038/nrcardio.2012.45.
[26] Brouwers, C., Mommersteeg, P. M., Nyklíček, I., Pelle, A. J., Westerhuis, B. L., & Szabó, B. M. (2013). Positive affect dimensions and their association with inflammatory biomarkers in patients with chronic heart failure. Biological Psychology, 92(2), 220-226. DOI: 10.1016/j.biopsycho.2012.11.007.
[27] Williams, D. R., Yu, Y., Jackson, J. S., & Anderson, N. B. (1997). Racial differences in physical and mental health: Socio-economic status, stress and discrimination. Journal of Health Psychology, 2(3), 335-351. DOI: 10.1177/135910539700200305.
[28] Felitti, V. J., Anda, R. F., Nordenberg, D., Williamson, D. F., Spitz, A. M., Edwards, V., ... & Marks, J. S. (1998). Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults: The Adverse Childhood Experiences (ACE) Study. American Journal of Preventive Medicine, 14(4), 245-258. DOI: 10.1016/S0749-3797(98)00017-8.
[29] Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 2507-2517.
[30] Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation, 93(5), 1043-1065
[31] Cohen, S., & Williamson, G. (1991). Stress and infectious disease in humans. Psychological Bulletin, 109(1), 5-24. DOI: 10.1037/0033-2909.109.1.5.
[32] McEwen, B. S., & Gianaros, P. J. (2011). Stress- and allostasis-induced brain plasticity. Annual Review of Medicine, 62, 431-445. DOI: 10.1146/annurev-med-052209-100430.
[33] Fagundes, C. P., Glaser, R., & Kiecolt-Glaser, J. K. (2013). Stressful early life experiences and immune dysregulation across the lifespan. Brain, Behavior, and Immunity, 27, 8-12. DOI: 10.1016/j.bbi.2012.06.014.
[34] Segerstrom, S. C., & Miller, G. E. (2004). Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry. Psychological Bulletin, 130(4), 601-630. DOI: 10.1037/0033-2909.130.4.601.
[35] Vitaliano, P. P., Scanlan, J. M., Zhang, J., Savage, M. V., & Hirsch, I. B. (2002). Siegler IC. A path model of chronic stress, the metabolic syndrome, and coronary heart disease. Psychosomatic Medicine, 64(3), 418-435. DOI: 10.1097/00006842-200205000-00012.
[36] Kudielka, B. M., & Kirschbaum, C. (2005). Sex differences in HPA axis responses to stress: A review. Biological Psychology, 69(1), 113-132. DOI: 10.1016/j.biopsycho.2004.11.009.
[37] McEwen, B. S., & Stellar, E. (1993). Stress and the individual: Mechanisms leading to disease. Archives of Internal Medicine, 153(18), 2093-2101. DOI: 10.1001/archinte.1993.00410180039004.
[38] Juster, R. P., McEwen, B. S., & Lupien, S. J. (2010). Allostatic load biomarkers of chronic stress and impact on health and cognition. Neuroscience & Biobehavioral Reviews, 35(1), 2-16. DOI: 10.1016/j.neubiorev.2009.10.002.
[39] McEwen, B. S. (1998). Stress, adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840(1), 33-44. DOI: 10.1111/j.1749-6632.1998.tb09546.x.
[40] Miller, G. E., Chen, E., & Parker, K. J. (2011). Psychological stress in childhood and susceptibility to the chronic diseases of aging: Moving toward a model of behavioral and biological mechanisms. Psychological Bulletin, 137(6), 959-997. DOI: 10.1037/a0024768.
[41] Shonkoff, J. P., Boyce, W. T., & McEwen, B. S. (2009). Neuroscience, molecular biology, and the childhood roots of health disparities: Building a new framework for health promotion and disease prevention. JAMA, 301(21), 2252-2259. DOI: 10.1001/jama.2009.754.
[42] Holsboer, F., & Ising, M. (2010). Stress hormone regulation: Biological role and translation into therapy. Annual Review of Psychology, 61, 81-109. DOI: 10.1146/annurev.psych.093008.100321.
[43] Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16-28.
[44] Cohen, S., Kamarck, T., & Mermelstein, R. (1983). A global measure of perceived stress. Journal of Health and Social Behavior, 24(4), 385-396.
[45] Holmes, T. H., & Rahe, R. H. (1967). The Social Readjustment Rating Scale. Journal of Psychosomatic Research, 11(2), 213-218.
[46] Lovibond, P. F., & Lovibond, S. H. (1995). The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories. Behaviour Research and Therapy, 33(3), 335-343.
[47] Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157-1182
[48] McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87(3), 873-904.
[49] Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews Endocrinology, 5(7), 374-381.
[50] Kivimäki, M., Virtanen, M., Elovainio, M., Kouvonen, A., Väänänen, A., & Vahtera, J. (2006). Work stress in the etiology of coronary heart disease—a meta-analysis. Scandinavian Journal of Work, Environment & Health, 32(6), 431-442.