• Home
  • Feature Extraction
    • List of Articles Feature Extraction

      • Open Access Article

        1 - Online Signature Verification: a Robust Approach for Persian Signatures
        Mohamamd Esmaeel Yahyatabar Yasser  Baleghi Mohammad Reza Karami-Mollaei
        In this paper, the specific trait of Persian signatures is applied to signature verification. Efficient features, which can discriminate among Persian signatures, are investigated in this approach. Persian signatures, in comparison with other languages signatures, have Full Text
        In this paper, the specific trait of Persian signatures is applied to signature verification. Efficient features, which can discriminate among Persian signatures, are investigated in this approach. Persian signatures, in comparison with other languages signatures, have more curvature and end in a specific style. Usually, Persian signatures have special characteristics, in terms of speed, acceleration and pen pressure, during drawing curves. An experiment has been designed to determine the function indicating the most robust features of Persian signatures. Results obtained from this experiment are then used in feature extraction stage. To improve the performance of verification, a combination of shape based and dynamic extracted features is applied to Persian signature verification. To classify these signatures, Support Vector Machine (SVM) is applied. The proposed method is examined on two common Persian datasets, the new proposed Persian dataset in this paper (Noshirvani Dynamic Signature Dataset) and an international dataset (SVC2004). For three Persian datasets EER value are equal to 3, 3.93, 4.79, while for SVC2004 the EER value is 4.43. Manuscript Document
      • Open Access Article

        2 - Farsi Font Detection using the Adaptive RKEM-SURF Algorithm
        Zahra Hossein-Nejad Hamed Agahi Azar Mahmoodzadeh
        Farsi font detection is considered as the first stage in the Farsi optical character recognition (FOCR) of scanned printed texts. To this aim, this paper proposes an improved version of the speeded-up robust features (SURF) algorithm, as the feature detector in the font Full Text
        Farsi font detection is considered as the first stage in the Farsi optical character recognition (FOCR) of scanned printed texts. To this aim, this paper proposes an improved version of the speeded-up robust features (SURF) algorithm, as the feature detector in the font recognition process. The SURF algorithm suffers from creation of several redundant features during the detection phase. Thus, the presented version employs the redundant keypoint elimination method (RKEM) to enhance the matching performance of the SURF by reducing unnecessary keypoints. Although the performance of the RKEM is acceptable in this task, it exploits a fixed experimental threshold value which has a detrimental impact on the results. In this paper, an Adaptive RKEM is proposed for the SURF algorithm which considers image type and distortion, when adjusting the threshold value. Then, this improved version is applied to recognize Farsi fonts in texts. To do this, the proposed Adaptive RKEM-SURF detects the keypoints and then SURF is used as the descriptor for the features. Finally, the matching process is done using the nearest neighbor distance ratio. The proposed approach is compared with recently published algorithms for FOCR to confirm its superiority. This method has the capability to be generalized to other languages such as Arabic and English. Manuscript Document
      • Open Access Article

        3 - A Hybrid Machine Learning Approach for Sentiment Analysis of Beauty Products Reviews
        Kanika Jindal Rajni Aron
        Nowadays, social media platforms have become a mirror that imitates opinions and feelings about any specific product or event. These product reviews are capable of enhancing communication among entrepreneurs and their customers. These reviews need to be extracted and an Full Text
        Nowadays, social media platforms have become a mirror that imitates opinions and feelings about any specific product or event. These product reviews are capable of enhancing communication among entrepreneurs and their customers. These reviews need to be extracted and analyzed to predict the sentiment polarity, i.e., whether the review is positive or negative. This paper aims to predict the human sentiments expressed for beauty product reviews extracted from Amazon and improve the classification accuracy. The three phases instigated in our work are data pre-processing, feature extraction using the Bag-of-Words (BoW) method, and sentiment classification using Machine Learning (ML) techniques. A Global Optimization-based Neural Network (GONN) is proposed for the sentimental classification. Then an empirical study is conducted to analyze the performance of the proposed GONN and compare it with the other machine learning algorithms, such as Random Forest (RF), Naive Bayes (NB), and Support Vector Machine (SVM). We dig further to cross-validate these techniques by ten folds to evaluate the most accurate classifier. These models have also been investigated on the Precision-Recall (PR) curve to assess and test the best technique. Experimental results demonstrate that the proposed method is the most appropriate method to predict the classification accuracy for our defined dataset. Specifically, we exhibit that our work is adept at training the textual sentiment classifiers better, thereby enhancing the accuracy of sentiment prediction. Manuscript Document