• Home
  • Image Processing
  • OpenAccess
    • List of Articles Image Processing

      • Open Access Article

        1 - On-road Vehicle detection based on hierarchical clustering using adaptive vehicle localization
        Moslem  Mohammadi Jenghara Hossein Ebrahimpour Komleh
        Vehicle detection is one of the important tasks in automatic driving. It is a hard problem that many researchers focused on it. Most commercial vehicle detection systems are based on radar. But these methods have some problems such as have problem in zigzag motions. Im More
        Vehicle detection is one of the important tasks in automatic driving. It is a hard problem that many researchers focused on it. Most commercial vehicle detection systems are based on radar. But these methods have some problems such as have problem in zigzag motions. Image processing techniques can overcome these problems.This paper introduces a method based on hierarchical clustering using low-level image features for on-road vehicle detection. Each vehicle assumed as a cluster. In traditional clustering methods, the threshold distance for each cluster is fixed, but in this paper, the adaptive threshold varies according to the position of each cluster. The threshold measure is computed with bivariate normal distribution. Sampling and teammate selection for each cluster is applied by the members-based weighted average. For this purpose, unlike other methods that use only horizontal or vertical lines, a fully edge detection algorithm was utilized. Corner is an important feature of video images that commonly were used in vehicle detection systems. In this paper, Harris features are applied to detect the corners. LISA data set is used to evaluate the proposed method. Several experiments are applied to investigate the performance of proposed algorithm. Experimental results show good performance compared to other algorithms . Manuscript profile
      • Open Access Article

        2 - Drone Detection by Neural Network Using GLCM and SURF Features
        Tanzia  Ahmed Tanvir  Rahman Bir  Ballav Roy Jia Uddin
        This paper presents a vision-based drone detection method. There are a number of researches on object detection which includes different feature extraction methods – all of those are used distinctly for the experiments. But in the proposed model, a hybrid feature extrac More
        This paper presents a vision-based drone detection method. There are a number of researches on object detection which includes different feature extraction methods – all of those are used distinctly for the experiments. But in the proposed model, a hybrid feature extraction method using SURF and GLCM is used to detect object by Neural Network which has never been experimented before. Both are very popular ways of feature extraction. Speeded-up Robust Feature (SURF) is a blob detection algorithm which extracts the points of interest from an integral image, thus converts the image into a 2D vector. The Gray-Level Co-Occurrence Matrix (GLCM) calculates the number of occurrences of consecutive pixels in same spatial relationship and represents it in a new vector- 8 × 8 matrix of best possible attributes of an image. SURF is a popular method of feature extraction and fast matching of images, whereas, GLCM method extracts the best attributes of the images. In the proposed model, the images were processed first to fit our feature extraction methods, then the SURF method was implemented to extract the features from those images into a 2D vector. Then for our next step GLCM was implemented which extracted the best possible features out of the previous vector, into a 8 × 8 matrix. Thus, image is processed in to a 2D vector and feature extracted from the combination of both SURF and GLCM methods ensures the quality of the training dataset by not just extracting features faster (with SURF) but also extracting the best of the point of interests (with GLCM). The extracted featured related to the pattern are used in the neural network for training and testing. Pattern recognition algorithm has been used as a machine learning tool for the training and testing of the model. In the experimental evaluation, the performance of proposed model is examined by cross entropy for each instance and percentage error. For the tested drone dataset, experimental results demonstrate improved performance over the state-of-art models by exhibiting less cross entropy and percentage error. Manuscript profile
      • Open Access Article

        3 - Comparing the Semantic Segmentation of High-Resolution Images Using Deep Convolutional Networks: SegNet, HRNet, CSE-HRNet and RCA-FCN
        Nafiseh Sadeghi Homayoun Mahdavi-Nasab Mansoor Zeinali Hossein Pourghasem
        Semantic segmentation is a branch of computer vision, used extensively in image search engines, automated driving, intelligent agriculture, disaster management, and other machine-human interactions. Semantic segmentation aims to predict a label for each pixel from a giv More
        Semantic segmentation is a branch of computer vision, used extensively in image search engines, automated driving, intelligent agriculture, disaster management, and other machine-human interactions. Semantic segmentation aims to predict a label for each pixel from a given label set, according to semantic information. Among the proposed methods and architectures, researchers have focused on deep learning algorithms due to their good feature learning results. Thus, many studies have explored the structure of deep neural networks, especially convolutional neural networks. Most of the modern semantic segmentation models are based on fully convolutional networks (FCN), which first replace the fully connected layers in common classification networks with convolutional layers, getting pixel-level prediction results. After that, a lot of methods are proposed to improve the basic FCN methods results. With the increasing complexity and variety of existing data structures, more powerful neural networks and the development of existing networks are needed. This study aims to segment a high-resolution (HR) image dataset into six separate classes. Here, an overview of some important deep learning architectures will be presented with a focus on methods producing remarkable scores in segmentation metrics such as accuracy and F1-score. Finally, their segmentation results will be discussed and we would see that the methods, which are superior in the overall accuracy and overall F1-score, are not necessarily the best in all classes. Therefore, the results of this paper lead to the point to choose the segmentation algorithm according to the application of segmentation and the importance degree of each class. Manuscript profile