• Home
  • Reza Nasiripour
    • List of Articles Reza Nasiripour

      • Open Access Article

        1 - Improved Generic Object Retrieval In Large Scale Databases By SURF Descriptor
        Hassan Farsi Reza Nasiripour Sajad Mohammadzadeh
        Normally, the-state-of-the-art methods in field of object retrieval for large databases are achieved by training process. We propose a novel large-scale generic object retrieval which only uses a single query image and training-free. Current object retrieval methods req Full Text
        Normally, the-state-of-the-art methods in field of object retrieval for large databases are achieved by training process. We propose a novel large-scale generic object retrieval which only uses a single query image and training-free. Current object retrieval methods require a part of image database for training to construct the classifier. This training can be supervised or unsupervised and semi-supervised. In the proposed method, the query image can be a typical real image of the object. The object is constructed based on Speeded Up Robust Features (SURF) points acquired from the image. Information of relative positions, scale and orientation between SURF points are calculated and constructed into the object model. Dynamic programming is used to try all possible combinations of SURF points for query and datasets images. The ability to match partial affine transformed object images comes from the robustness of SURF points and the flexibility of the model. Occlusion is handled by specifying the probability of a missing SURF point in the model. Experimental results show that this matching technique is robust under partial occlusion and rotation. The properties and performance of the proposed method are demonstrated on the large databases. The obtained results illustrate that the proposed method improves the efficiency, speeds up recovery and reduces the storage space. Manuscript Document
      • Open Access Article

        2 - Eye Gaze Detection Based on Learning Automata by Using SURF Descriptor
        Hassan Farsi Reza Nasiripour Sajad Mohammadzadeh
        In the last decade, eye gaze detection system is one of the most important areas in image processing and computer vision. The performance of eye gaze detection system depends on iris detection and recognition (IR). Iris recognition is very important role for person iden Full Text
        In the last decade, eye gaze detection system is one of the most important areas in image processing and computer vision. The performance of eye gaze detection system depends on iris detection and recognition (IR). Iris recognition is very important role for person identification. The aim of this paper is to achieve higher recognition rate compared to learning automata based methods. Usually, iris retrieval based systems consist of several parts as follows: pre-processing, iris detection, normalization, feature extraction and classification which are captured from eye region. In this paper, a new method without normalization step is proposed. Meanwhile, Speeded up Robust Features (SURF) descriptor is used to extract features of iris images. The descriptor of each iris image creates a vector with 64 dimensions. For classification step, learning automata classifier is applied. The proposed method is tested on three known iris databases; UBIRIS, MMU and UPOL database. The proposed method results in recognition rate of 100% for UBIRIS and UPOL databases and 99.86% for MMU iris database. Also, EER rate of the proposed method for UBIRIS, UPOL and MMU iris database are 0.00%, 0.00% and 0.008%, respectively. Experimental results show that the proposed learning automata classifier results in minimum classification error, and improves precision and computation time. Manuscript Document