• Home
  • Mohammadsadegh  Khayyatian
  • OpenAccess
    • List of Articles Mohammadsadegh  Khayyatian

      • Open Access Article

        1 - Reducing Energy Consumption in Sensor-Based Internet of Things Networks Based on Multi-Objective Optimization Algorithms
        Mohammad sedighimanesh Hessam  Zandhessami Mahmood  Alborzi Mohammadsadegh  Khayyatian
        Energy is an important parameter in establishing various communications types in the sensor-based IoT. Sensors usually possess low-energy and non-rechargeable batteries since these sensors are often applied in places and applications that cannot be recharged. The mos More
        Energy is an important parameter in establishing various communications types in the sensor-based IoT. Sensors usually possess low-energy and non-rechargeable batteries since these sensors are often applied in places and applications that cannot be recharged. The most important objective of the present study is to minimize the energy consumption of sensors and increase the IoT network's lifetime by applying multi-objective optimization algorithms when selecting cluster heads and routing between cluster heads for transferring data to the base station. In the present article, after distributing the sensor nodes in the network, the type-2 fuzzy algorithm has been employed to select the cluster heads and also the genetic algorithm has been used to create a tree between the cluster heads and base station. After selecting the cluster heads, the normal nodes become cluster members and send their data to the cluster head. After collecting and aggregating the data by the cluster heads, the data is transferred to the base station from the path specified by the genetic algorithm. The proposed algorithm was implemented with MATLAB simulator and compared with LEACH, MB-CBCCP, and DCABGA protocols, the simulation results indicate the better performance of the proposed algorithm in different environments compared to the mentioned protocols. Due to the limited energy in the sensor-based IoT and the fact that they cannot be recharged in most applications, the use of multi-objective optimization algorithms in the design and implementation of routing and clustering algorithms has a significant impact on the increase in the lifetime of these networks. Manuscript profile
      • Open Access Article

        2 - Optimal Clustering-based Routing Protocol Using Self-Adaptive Multi-Objective TLBO For Wireless Sensor Network
        Ali Sedighimanesh Hessam  Zandhessami Mahmood  Alborzi Mohammadsadegh  Khayyatian
        Wireless sensor networks consist of many fixed or mobile, non-rechargeable, low-cost, and low-consumption nodes. Energy consumption is one of the most important challenges due to the non-rechargeability or high cost of sensor nodes. Hence, it is of great importance to a More
        Wireless sensor networks consist of many fixed or mobile, non-rechargeable, low-cost, and low-consumption nodes. Energy consumption is one of the most important challenges due to the non-rechargeability or high cost of sensor nodes. Hence, it is of great importance to apply some methods to reduce the energy consumption of sensors. The use of clustering-based routing is a method that reduces the energy consumption of sensors. In the present article, the Self-Adaptive Multi-objective TLBO (SAMTLBO) algorithm is applied to select the optimal cluster headers. After this process, the sensors become the closest components to cluster headers and send the data to their cluster headers. Cluster headers receive, aggregate, and send data to the sink in multiple steps using the TLBO-TS hybrid algorithm that reduces the energy consumption of the cluster heads when sending data to the sink and, ultimately, an increase in the wireless sensor network’s lifetime. The simulation results indicate that our proposed protocol (OCRP) show better performance by 35%, 17%, and 12% compared to ALSPR, CRPD, and COARP algorithms, respectively. Conclusion: Due to the limited energy of sensors, the use of meta-heuristic methods in clustering and routing improves network performance and increases the wireless sensor network's lifetime. Manuscript profile
      • Open Access Article

        3 - Energy Efficient Routing-Based Clustering Protocol Using Computational Intelligence Algorithms in Sensor-Based IoT
        Mohammad sedighimanesh Hessam  Zandhessami Mahmood  Alborzi Mohammadsadegh  Khayyatian
        Background: The main limitation of wireless IoT sensor-based networks is their energy resource, which cannot be charged or replaced because, in most applications, these sensors are usually applied in places where they are not accessible or rechargeable. Objective: The p More
        Background: The main limitation of wireless IoT sensor-based networks is their energy resource, which cannot be charged or replaced because, in most applications, these sensors are usually applied in places where they are not accessible or rechargeable. Objective: The present article's main objective is to assist in improving energy consumption in the sensor-based IoT network and thus increase the network’s lifetime. Cluster heads are used to send data to the base station. Methods: In the present paper, the type-1 fuzzy algorithm is employed to select cluster heads, and the type-2 fuzzy algorithm is used for routing between cluster heads to the base station. After selecting the cluster head using the type-1 fuzzy algorithm, the normal nodes become the members of the cluster heads and send their data to the cluster head, and then the cluster heads transfer the collected data to the main station through the path which has been determined by the type-2 fuzzy algorithm. Results: The proposed algorithm was implemented using MATLAB simulator and compared with LEACH, DEC, and DEEC protocols. The simulation results suggest that the proposed protocol among the mentioned algorithms increases the network’s lifetime in homogeneous and heterogeneous environments. Conclusion: Due to the energy limitation in sensor-based IoT networks and the impossibility of recharging the sensors in most applications, the use of computational intelligence techniques in the design and implementation of these algorithms considerably contributes to the reduction of energy consumption and ultimately the increase in network’s lifetime. Manuscript profile