• Home
  • Shohreh Kasaei
  • OpenAccess
    • List of Articles Shohreh Kasaei

      • Open Access Article

        1 - Information Bottleneck and its Applications in Deep Learning
        Hassan Hafez Kolahi Shohreh Kasaei
        Information Theory (IT) has been used in Machine Learning (ML) from early days of this field. In the last decade, advances in Deep Neural Networks (DNNs) have led to surprising improvements in many applications of ML. The result has been a paradigm shift in the communit More
        Information Theory (IT) has been used in Machine Learning (ML) from early days of this field. In the last decade, advances in Deep Neural Networks (DNNs) have led to surprising improvements in many applications of ML. The result has been a paradigm shift in the community toward revisiting previous ideas and applications in this new framework. Ideas from IT are no exception. One of the ideas which is being revisited by many researchers in this new era, is Information Bottleneck (IB); a formulation of information extraction based on IT. The IB is promising in both analyzing and improving DNNs. The goal of this survey is to review the IB concept and demonstrate its applications in deep learning. The information theoretic nature of IB, makes it also a good candidate in showing the more general concept of how IT can be used in ML. Two important concepts are highlighted in this narrative on the subject, i) the concise and universal view that IT provides on seemingly unrelated methods of ML, demonstrated by explaining how IB relates to minimal sufficient statistics, stochastic gradient descent, and variational auto-encoders, and ii) the common technical mistakes and problems caused by applying ideas from IT, which is discussed by a careful study of some recent methods suffering from them. Manuscript profile
      • Open Access Article

        2 - Body Field: Structured Mean Field with Human Body Skeleton Model and Shifted Gaussian Edge Potentials
        Sara Ershadi-Nasab Shohreh Kasaei Esmaeil Sanaei Erfan Noury Hassan Hafez-kolahi
        An efficient method for simultaneous human body part segmentation and pose estimation is introduced. A conditional random field with a fully-connected graphical model is used. Possible node (image pixel) labels comprise of the human body parts and the background. In the More
        An efficient method for simultaneous human body part segmentation and pose estimation is introduced. A conditional random field with a fully-connected graphical model is used. Possible node (image pixel) labels comprise of the human body parts and the background. In the human body skeleton model, the spatial dependencies among body parts are encoded in the definition of pairwise energy functions according to the conditional random fields. Proper pairwise edge potentials between image pixels are defined according to the presence or absence of human body parts that are near to each other. Various Gaussian kernels in position, color, and histogram of oriented gradients spaces are used for defining the pairwise energy terms. Shifted Gaussian kernels are defined between each two body parts that are connected to each other according to the human body skeleton model. As shifted Gaussian kernels impose a high computational cost to the inference, an efficient inference process is proposed by a mean field approximation method that uses high dimensional shifted Gaussian filtering. The experimental results evaluated on the challenging KTH Football, Leeds Sports Pose, HumanEva, and Penn-Fudan datasets show that the proposed method increases the per-pixel accuracy measure for human body part segmentation and also improves the probability of correct parts metric of human body joint locations. Manuscript profile