• OpenAccess
    • List of Articles OFDM

      • Open Access Article

        1 - BER Performance Analysis of MIMO-OFDM Communication Systems Using Iterative Technique Over Indoor Power Line Channels in an Impulsive Noise Environment
        Mohammad Reza Ahadiat Paeez Azmi Afrooz Haghbin
        This paper addresses the performance of MIMO-OFDM communication system in environments where the interfering noise exhibits non-Gaussian behavior due to impulsive phenomena. It presents the design and simulation of an iterative technique that aims to minimize the effect More
        This paper addresses the performance of MIMO-OFDM communication system in environments where the interfering noise exhibits non-Gaussian behavior due to impulsive phenomena. It presents the design and simulation of an iterative technique that aims to minimize the effect of impulsive noise on the performance of the MIMO-OFDM communication system under Additive White Gaussian Noise (AWGN) channel. This is a new method to recover the signals corrupted by impulsive noise in MIMO-OFDM systems over In-home Power Line Channel. The location and amplitude Impulsive noise at the receiver using an adaptive threshold to be determined. Reduced Impulsive noise effects using the mask based on the soft decision method. By iteration, the original signal estimation can be used to improve the impulsive noise estimation. This continuous loop impulsive noise detection and mitigation a better estimate of the original signal is obtained. The Bit Error Rate (BER) performance of the MIMO-OFDM system in an impulsive noise environment was evaluated. The results show the superiority and robustness of the proposed method. Manuscript profile
      • Open Access Article

        2 - Achieving Better Performance of S-MMA Algorithm in the OFDM Modulation
        Saeed Ghazi-Maghrebi Babak Haji Bagher Naeeni Mojtaba Lotfizad
        Effective algorithms in modern digital communication systems provide a fundamental basis for increasing the efficiency of the application networks which are in many cases neither optimized nor very close to their practical limits. Equalizations are one of the preferred More
        Effective algorithms in modern digital communication systems provide a fundamental basis for increasing the efficiency of the application networks which are in many cases neither optimized nor very close to their practical limits. Equalizations are one of the preferred methods for increasing the efficiency of application systems such as orthogonal frequency division multiplexing (OFDM). In this paper, we study the possibility of improving the OFDM modulation employing sliced multi-modulus algorithm (S-MMA) equalization. We compare applying the least mean square (LMS), multi modulus algorithm (MMA) and S-MMA equalizations to the per tone equalization in the OFDM modulation. The paper contribution lies in using the S-MMA technique, for weight adaptation, to decreasing the BER in the OFDM multicarrier modulation. For more efficiency, it is assumed that the channel impulse response is longer than the cyclic prefix (CP) length and as a result, the system will be more efficient but at the expense of the high intersymbol interference (ISI) impairment existing. Both analysis and simulations demonstrate better performance of the S-MMA compared to LMS and MMA algorithms, in standard channels with additive white Gaussian noise (AWGN) and ISI impairment simultanously. Therefore, the S-MMA equalization is a good choice for high speed and real-time applications such as OFDM based systems. Manuscript profile
      • Open Access Article

        3 - Performance Analysis of SVM-Type Per Tone Equalizer Using Blind and Radius Directed Algorithms for OFDM Systems
        Babak Haji Bagher Naeeni
        In this paper, we present Support Vector Machine (SVM)-based blind per tone equalization for OFDM systems. Blind per tone equalization using Constant Modulus Algorithm (CMA) and Multi-Modulus Algorithm (MMA) are used as the comparison benchmark. The SVM-based cost funct More
        In this paper, we present Support Vector Machine (SVM)-based blind per tone equalization for OFDM systems. Blind per tone equalization using Constant Modulus Algorithm (CMA) and Multi-Modulus Algorithm (MMA) are used as the comparison benchmark. The SVM-based cost function utilizes a CMA-like error function and the solution is obtained by means of an Iterative Re-Weighted Least Squares Algorithm (IRWLS). Moreover, like CMA, the error function allows to extend the method to multilevel modulations. In this case, a dual mode algorithm is proposed. Dual mode equalization techniques are commonly used in communication systems working with multilevel signals. Practical blind algorithms for multilevel modulation are able to open the eye of the constellation, but they usually exhibit a high residual error. In a dual mode scheme, once the eye is opened by the blind algorithm, the system switches to another algorithm, which is able to obtain a lower residual error under a suitable initial ISI level. Simulation experiments show that the performance of blind per tone equalization using support vector machine has better than blind per tone equalization using CMA and MMA, from viewpoint of average Bit-Error Rate (BER). Manuscript profile
      • Open Access Article

        4 - High I/Q Imbalance Receiver Compensation and Decision Directed Frequency Selective Channel Estimation in an OFDM Receiver Employing Neural Network
        afalahati afalahati Sajjad Nasirpour
        The disparity introduced between In-phase and Quadrature components in a digital communication system receiver known as I/Q imbalance is a prime objective within the employment of direct conversion architectures. It reduces the performance of channel estimation and caus More
        The disparity introduced between In-phase and Quadrature components in a digital communication system receiver known as I/Q imbalance is a prime objective within the employment of direct conversion architectures. It reduces the performance of channel estimation and causes to receive the data symbol with errors. This imbalance phenomenon, at its lowest still can result very serious signal distortions at the reception of an OFDM multi-carrier system. In this manuscript, an algorithm based on neural network scenario, is proposed that deploys both Long Training Symbols (LTS) as well as data symbols, to jointly estimate the channel and to compensate parameters that are damaged by I/Q imbalanced receiver. In this algorithm, we have a tradeoff between these parameters. I.e. when the minimum CG mean value is required, the minimum CG mean value could be chosen without others noticing it, but in usual case we have to take into account other parameters too, the limited values for the aimed parameters must be known. It uses the first iterations to train the system to reach the suitable value of GC without error floor. In this present article, it is assumed that the correlation between subcarriers is low and a few numbers of training and data symbols are used. The simulation results show that the proposed algorithm can compensate the high I/Q imbalance values and estimate channel frequency response more accurately compared with to date existing methods. Manuscript profile
      • Open Access Article

        5 - GoF-Based Spectrum Sensing of OFDM Signals over Fading Channels
        Seyed Sadra Kashef paeez azmi Hamed Sadeghi
        Goodness-of-Fit (GoF) based spectrum sensing of orthogonal frequency-division multiplexing (OFDM) signals is investigated in this paper. To this end, some novel local sensing methods based on Shapiro-Wilk (SW), Shapiro-Francia (SF), and Jarque-Bera (JB) tests are first More
        Goodness-of-Fit (GoF) based spectrum sensing of orthogonal frequency-division multiplexing (OFDM) signals is investigated in this paper. To this end, some novel local sensing methods based on Shapiro-Wilk (SW), Shapiro-Francia (SF), and Jarque-Bera (JB) tests are first studied. In essence, a new threshold selection technique is proposed for SF and SW tests. Then, three studied methods are applied to spectrum sensing for the first time and their performance are analyzed. Furthermore, the computational complexity of the above methods is computed and compared to each other. Simulation results demonstrate that the SF detector outperforms other existing GoF-based methods over AWGN channels. Furthermore simulation results demonstrate the superiority of the proposed SF method in additive colored Gaussian noise channels and over fading channel in comparison with the conventional energy detector. Manuscript profile
      • Open Access Article

        6 - Better Performance of New Generation of Digital Video Broadcasting-terrestrial (DVB-T2) Using Alamouti scheme with Cyclic Delay Diversity
        Behnam Akbarian Saeed Ghazi-Maghrebi
        The goal of the future terrestrial digital video broadcasting (DVB-T) standard is to employ diversity and spatial multiplexing in order to achieve the fully multiple-input multiple-output (MIMO) channel capacity. The DVB-T2 standard targets an improved system performanc More
        The goal of the future terrestrial digital video broadcasting (DVB-T) standard is to employ diversity and spatial multiplexing in order to achieve the fully multiple-input multiple-output (MIMO) channel capacity. The DVB-T2 standard targets an improved system performance throughput by at least 30% over the DVB-T. The DVB-T2 enhances the performance using improved coding methods, modulation techniques and multiple antenna technologies. After a brief presentation of the antenna diversity technique and its properties, we introduce the fact of the well-known Alamouti decoding scheme cannot be simply used over the frequency selective channels. In other words, the Alamouti Space-Frequency coding in DVB-T2 provides additional diversity. However, the performance degrades in highly frequency-selective channels, because the channel frequency response is not necessarily flat over the entire Alamouti block code. The objective of this work is to present an enhanced Alamouti space frequency block decoding scheme for MIMO and orthogonal frequency-division multiplexing (OFDM) systems using the delay diversity techniques over highly frequency selective channels. Also, we investigate the properties of the proposed scheme over different channels. Specifically, we show that the Alamouti scheme with using Cyclic Delay Diversity (CDD) over some particular channels has the better performance. Then, we exemplarity implement this scheme to the DVB-T2 system. Simulation results confirm that the proposed scheme has lower bit error rate (BER), especially for high SNRs, with respect to the standard Alamouti decoder over highly frequency-selective channels such as single frequency networks (SFN). Furthermore, the new scheme allows a high reliability and tolerability. The other advantages of the proposed method are its simplicity, flexibility and standard compatibility with respect to the conventional methods. Manuscript profile
      • Open Access Article

        7 - Optimization of Random Phase Updating Technique for Effective Reduction in PAPR, Using Discrete Cosine Transform
        Babak Haji Bagher Naeeni
        One of problems of OFDM systems, is the big value of peak to average power ratio. To reduce it, any attempt have been done amongst which, random phase updating is an important technique. In contrast to paper, since power variance is computable before IFFT block, the com More
        One of problems of OFDM systems, is the big value of peak to average power ratio. To reduce it, any attempt have been done amongst which, random phase updating is an important technique. In contrast to paper, since power variance is computable before IFFT block, the complexity of this method would be less than other phase injection methods which could be an important factor. Another interesting capability of random phase updating technique is the possibility of applying the variance of threshold power. The operation of phase injection is repeated till the power variance reaches threshold power variance. However, this may be a considered as a disadvantage for random phase updating technique. The reason is that reaching the mentioned threshold may lead to possible system delay. In this paper, in order to solve the mentioned problem, DCT transform is applied on subcarrier outputs before phase injection. This leads to reduce the number of required carriers for reaching the threshold value which results in reducing system delay accordingly. Manuscript profile
      • Open Access Article

        8 - Better performance of special triangular constellations for the OFDM systems in complicated fading channel
        saeed ghazi-maghrebi
        Due to high spectral efficiency, immunity to frequency selective fading, and high data rate, OFDM became a popular modulation technique in digital communication systems. Effectiveness of a signal constellation used in a communication system can provide a fundamental bas More
        Due to high spectral efficiency, immunity to frequency selective fading, and high data rate, OFDM became a popular modulation technique in digital communication systems. Effectiveness of a signal constellation used in a communication system can provide a fundamental basis for efficiency of application networks. During recent years, different constellations were designed for different modulation schemes. In this research, two new triangular constellations schemes which are named as TRI1 and TRI2 are introduced to replace for the well-known rectangular QAM constellation in OFDM modulation. In this paper, the new proposed schemes are compared with different triangular constellations. It has been shown that these new schemes have three major advantages with respect to the QAM. The first advantage is its lower BER which results from the better usage of the constellation space with longer minimum distances. The second advantage of these schemes is their lower PAR with respect to the rectangular QAM constellation. The third property, as the last advantages, is their higher noise immunity with respect to the commonly used QAM constellation. Both mathematical analysis and simulation results demonstrate that by applying high fading channels with AWGN and ISI impairment simultaneously, the TRI1 and TRI2 exhibit a superior performance compared to the rectangular QAM. As a result, they are good choice for high speed and real-time multicarrier applications such as DAB, DVB, and WiFi at no extra cost. Manuscript profile
      • Open Access Article

        9 - Low Complex Standard Conformable Transceiver based on Doppler Spread for DVB-T2 Systems
        Saeed Ghazi-Maghrebi Behnam Akbarian
        This paper addresses a novel Alamouti space-frequency block decoding scheme with discontinuous Doppler diversity (DDoD) and cyclic delay diversity (CDD). We investigate different antenna diversity concepts, which can be applied to orthogonal frequency division multiplex More
        This paper addresses a novel Alamouti space-frequency block decoding scheme with discontinuous Doppler diversity (DDoD) and cyclic delay diversity (CDD). We investigate different antenna diversity concepts, which can be applied to orthogonal frequency division multiplexing (OFDM) systems over highly frequency selective channels. The main object of this research is standard compatibility and the effect of simple diversity techniques on the channel fading properties. Therefore, we analyze a receiver in terms of the effective channel transfer function, which leads to the possibility of optimizing diversity. Besides, a novel transceiver using DDoD is proposed, which increases the Doppler spread of the multipath fading channel without causing additional Intercarrier Interference (ICI). Moreover, an efficient Alamouti encoder and decoder based on CDD is proposed, which allows a high reliability and capacity enhancement. In order to evaluate the capability of that, we have implemented this scheme for the second-generation terrestrial video broadcasting (DVB-T2) system over different channels. Furthermore, mathematical analysis and simulation results show the bit error performance of the modified encoding method with these diversity techniques, performs mostly better than the other forms of encoding Alamouti over highly frequency-selective channels such as single frequency networks (SFN). The other advantages of the proposed method are simplicity, flexibility, and standard compatibility. Manuscript profile