• OpenAccess
  • About Journal

     The Journal of Information Systems and Telecommunication (JIST) accepts and publishes papers containing original researches and/or development results, representing an effective and novel contribution for knowledge in the area of information systems and Telecommunication. Contributions are accepted in the form of Regular papers or Correspondence. Regular papers are the ones with a well-rounded treatment of a problem area, whereas Correspondence focus on a point of a defined problem area. Under the permission of the editorial board, other kinds of papers may be published if they are found to be relevant or of interest to the readers. Responsibility for the content of the papers rests upon the Authors only. The Journal is aimed at not only a national target community, but also international audiences is taken into consideration. For this reason, authors are supposed to write in English.

    This Journal is Published under scientific support of Advanced Information Systems (AIS) Research Group and Digital & Signal Processing Group, ICTRC

    For further information on Article Processing Charges (APCs) policies, please visit our APC page or contact us infojist@gmail.com. 

     


    Recent Articles

    • Open Access Article

      1 - Breast Cancer Classification Approaches - A Comparative Analysis
      Mohan Kumar Sunil Kumar Khatri Masoud Mohammadian
      Issue 41 , Vol. 11 , Winter 2023
      Cancer of the breast is a difficult disease to treat since it weakens the patient's immune system. Particular interest has lately been shown in the identification of particular immune signals for a variety of malignancies in this regard. In recent years, several methods More
      Cancer of the breast is a difficult disease to treat since it weakens the patient's immune system. Particular interest has lately been shown in the identification of particular immune signals for a variety of malignancies in this regard. In recent years, several methods for predicting cancer based on proteomic datasets and peptides have been published. The cells turns into cancerous cells because of various reasons and get spread very quickly while detrimental to normal cells. In this regard, identifying specific immunity signs for a range of cancers has recently gained a lot of interest. Accurately categorizing and compartmentalizing the breast cancer subtype is a vital job. Computerized systems built on artificial intelligence can substantially save time and reduce inaccuracy. Several strategies for predicting cancer utilizing proteomic datasets and peptides have been reported in the literature in recent years.It is critical to classify and categorize breast cancer treatments correctly. It's possible to save time while simultaneously minimizing the likelihood of mistakes using machine learning and artificial intelligence approaches. Using the Wisconsin Breast Cancer Diagnostic dataset, this study evaluates the performance of various classification methods, including SVC, ETC, KNN, LR, and RF (random forest). Breast cancer can be detected and diagnosed using a variety of measurements of data (which are discussed in detail in the article) (WBCD). The goal is to determine how well each algorithm performs in terms of precision, recall, and accuracy. The variation of each classification threshold has been tested on various algorithms and SVM turned out to be very promising. Manuscript profile

    • Open Access Article

      2 - Developing A Contextual Combinational Approach for Predictive Analysis of Users Mobile Phone Trajectory Data in LBSNs
      Fatemeh  Ghanaati Gholamhossein Ekbatanifard Kamrad Khoshhal Roudposhti
      Issue 41 , Vol. 11 , Winter 2023
      Today, smartphones, due to their ubiquity, have become indispensable in human daily life. Progress in the technology of mobile phones has recently resulted in the emergence of several popular services such as location-based social networks (LBSNs) and predicting the nex More
      Today, smartphones, due to their ubiquity, have become indispensable in human daily life. Progress in the technology of mobile phones has recently resulted in the emergence of several popular services such as location-based social networks (LBSNs) and predicting the next Point of Interest (POI), which is an important task in these services. The gathered trajectory data in LBSNs include various contextual information such as geographical and temporal contextual information (GTCI) that play a crucial role in the next POI recommendations. Various methods, including collaborating filtering (CF) and recurrent neural networks, incorporated the contextual information of the user’ trajectory data to predict the next POIs. CF methods do not consider the effect of sequential data on modeling, while the next POI prediction problem is inherently a time sequence problem. Although recurrent models have been proposed for sequential data modeling, they have limitations such as similarly considering the effect of contextual information. Nonetheless, they have a separate impact as well. In the current study, a geographical temporal contextual information-extended attention gated recurrent unit (GTCI-EAGRU) architecture was proposed to separately consider the influence of geographical and temporal contextual information on the next POI recommendations. In this research, the GRU model was developed using three separate attention gates to consider the contextual information of the user trajectory data in the recurrent layer GTCI-EAGRU architecture, including timestamp, geographical, and temporal contextual attention gates. Inspired by the assumption of the matrix factorization method in CF approaches, a ranked list of POI recommendations was provided for each user. Moreover, a comprehensive evaluation was conducted by utilizing large-scale real-world datasets based on three LBSNs, including Gowalla, Brightkite, and Foursquare. The results revealed that the performance of GTCI-EAGRU was higher than that of competitive baseline methods in terms of Acc@10, on average, by 42.11% in three datasets. Manuscript profile

    • Open Access Article

      3 - An Autoencoder based Emotional Stress State Detection Approach by using Electroencephalography Signals
      Jia Uddin
      Issue 41 , Vol. 11 , Winter 2023
      Identifying hazards from human error is critical for industrial safety since dangerous and reckless industrial worker actions, as well as a lack of measures, are directly accountable for human-caused problems. Lack of sleep, poor nutrition, physical deformities, and wea More
      Identifying hazards from human error is critical for industrial safety since dangerous and reckless industrial worker actions, as well as a lack of measures, are directly accountable for human-caused problems. Lack of sleep, poor nutrition, physical deformities, and weariness are some of the key factors that contribute to these risky and reckless behaviors that might put a person in a perilous scenario. This scenario causes discomfort, worry, despair, cardiovascular disease, a rapid heart rate, and a slew of other undesirable outcomes. As a result, it would be advantageous to recognize people's mental states in the future in order to provide better care for them. Researchers have been studying electroencephalogram (EEG) signals to determine a person's stress level at work in recent years. A full feature analysis from domains is necessary to develop a successful machine learning model using electroencephalogram (EEG) inputs. By analyzing EEG data, a time-frequency based hybrid bag of features is designed in this research to determine human stress dependent on their sex. This collection of characteristics includes features from two types of assessments: time-domain statistical analysis and frequency-domain wavelet-based feature assessment. The suggested two layered autoencoder based neural networks (AENN) are then used to identify the stress level using a hybrid bag of features. The experiment uses the DEAP dataset, which is freely available. The proposed method has a male accuracy of 77.09% and a female accuracy of 80.93%. Manuscript profile

    • Open Access Article

      4 - Providing a New Smart Camera Architecture for Intrusion Detection in Wireless Visual Sensor Network
      Meisam Sharifi Sani Amid Khatibi
      Issue 41 , Vol. 11 , Winter 2023
      The wireless Visual sensor network is a highly functional domain of high-potential network generations in unpredictable and dynamic environments that have been deployed from a large number of uniform or non-uniform groups within the desired area, cause the realization o More
      The wireless Visual sensor network is a highly functional domain of high-potential network generations in unpredictable and dynamic environments that have been deployed from a large number of uniform or non-uniform groups within the desired area, cause the realization of large regulatory applications from the military and industrial domain to hospital and environment. Therefore, security is one of the most important challenges in these networks. In this research, a new method of routing smart cameras with the help of cloud computing technology has been provided. The framework in the cloud computing management layer increases security, routing, inter interaction, and other features required by wireless sensor networks. Systematic attacks are simulated by a series of standard data collected at the CTU University related to the Czech Republic with RapidMiner software. Finally, the accuracy of detection of attacks and error rates with the suggested NN-SVM algorithm, which is a combination of vector machines and neural networks, is provided in the smart cameras based on the visual wireless sensor networks in MATLAB software. The results show that different components of the proposed architecture meet the quality characteristics of visual wireless sensor networks. Detection of attacks in this method is in the range of 99.24% and 99.35% in the worst and best conditions, respectively. Manuscript profile

    • Open Access Article

      5 - A Customized Web Spider for Why-QA Pairs Corpus Preparation
      Manvi  Breja
      Issue 41 , Vol. 11 , Winter 2023
      Considering the growth of researches on improving the performance of non-factoid question answering system, there is a need of an open-domain non-factoid dataset. There are some datasets available for non-factoid and even how-type questions but no appropriate dataset av More
      Considering the growth of researches on improving the performance of non-factoid question answering system, there is a need of an open-domain non-factoid dataset. There are some datasets available for non-factoid and even how-type questions but no appropriate dataset available which comprises only open-domain why-type questions that can cover all range of questions format. Why-questions play a significant role and are usually asked in every domain. They are more complex and difficult to get automatically answered by the system as why-questions seek reasoning for the task involved. They are prevalent and asked in curiosity by real users and thus their answering depends on the users’ need, knowledge, context and their experience. The paper develops a customized web crawler for gathering a set of why-questions from five popular question answering websites viz. Answers.com, Yahoo! Answers, Suzan Verberne’s open-source dataset, Quora and Ask.com available on Web irrespective of any domain. Along with the questions, their category, document title and appropriate answer candidates are also maintained in the dataset. With this, distribution of why-questions according to their type and category are illustrated. To the best of our knowledge, it is the first large enough dataset of 2000 open-domain why-questions with their relevant answers that will further help in stimulating researches focusing to improve the performance of non-factoid type why-QAS. Manuscript profile

    • Open Access Article

      6 - Mathematical Modeling of Flow Control Mechanism in Wireless Network-on-Chip
      Fardad Rad Marzieh Gerami
      Issue 41 , Vol. 11 , Winter 2023
      Network-on-chip (NoC) is an effective interconnection solution of multicore chips. In recent years, wireless interfaces (WIs) are used in NoCs to reduce the delay and power consumption between long-distance cores. This new communication structure is called wireless netw More
      Network-on-chip (NoC) is an effective interconnection solution of multicore chips. In recent years, wireless interfaces (WIs) are used in NoCs to reduce the delay and power consumption between long-distance cores. This new communication structure is called wireless network-on-chip (WiNoC). Compared to the wired links, demand to use the shared wireless links leads to congestion in WiNoCs. This problem increases the average packet latency as well as the network latency. However, using an efficient control mechanism will have a great impact on the efficiency and performance of the WiNoCs. In this paper, a mathematical modeling-based flow control mechanism in WiNoCs has been investigated. At first, the flow control problem has been modeled as a utility-based optimization problem with the wireless bandwidth capacity constraints and flow rate of processing cores. Next, the initial problem has been transformed into a dual problem without limitations and the best solution of the dual problem is obtained by the gradient projection method. Finally, an iterative algorithm is proposed in a WiNoC to control the flow rate of each core. The simulation results of synthetic traffic patterns show that the proposed algorithm can control and regulate the flow rate of each core with an acceptable convergence. Hence, the network throughput will be significantly improved. Manuscript profile

    • Open Access Article

      7 - Study and Realization of an Alarm System by Coded Laser Barrier Analyzed by the Wavelet Transform
      meriane brahim Salah Rahmouni Issam Tifouti
      Issue 41 , Vol. 11 , Winter 2023
      This article introduces the study and realization of the laser barrier alarm system, after the laser is obtained by an electronic card, the wireless control system is connected to the control room to announce the application in real time, and the laser is used in many a More
      This article introduces the study and realization of the laser barrier alarm system, after the laser is obtained by an electronic card, the wireless control system is connected to the control room to announce the application in real time, and the laser is used in many applications fields, from industry to medicine, in this article on the basis of Industrial applications such as laser barrier. It uses an alarm system to detect and deter intruders. Basic security includes protecting the perimeter of a military base or a safety distance in unsafe locations or near a government location. The first stage secures surrounding access points such as doors and windows; The second stage consists of internal detection with motion detectors that monitor movements, In this article, we adopt the embodiment of a coded laser barrier that is transmitted between two units, processes the signal, compares the agreed conditions, and to be high accuracy, we suggest using wavelet transmission to process the received signal and find out the frequencies that achieve alarm activation considering that the transmitted signal They are pulses, but after analysis with a proposed algorithm, we can separate the unwanted frequencies generated by the differential vibrations in order to arrive at a practically efficient system. Manuscript profile

    • Open Access Article

      8 - Foreground-Back ground Segmentation using K-Means Clustering Algorithm and Support Vector Machine
      Masoumeh Rezaei mansoureh rezaei Masoud Rezaei
      Issue 41 , Vol. 11 , Winter 2023
      Foreground-background image segmentation has been an important research problem. It is one of the main tasks in the field of computer vision whose purpose is detecting variations in image sequences. It provides candidate objects for further attentional selection, e.g., More
      Foreground-background image segmentation has been an important research problem. It is one of the main tasks in the field of computer vision whose purpose is detecting variations in image sequences. It provides candidate objects for further attentional selection, e.g., in video surveillance. In this paper, we introduce an automatic and efficient Foreground-background segmentation. The proposed method starts with the detection of visually salient image regions with a saliency map that uses Fourier transform and a Gaussian filter. Then, each point in the maps classifies as salient or non-salient using a binary threshold. Next, a hole filling operator is applied for filling holes in the achieved image, and the area-opening method is used for removing small objects from the image. For better separation of the foreground and background, dilation and erosion operators are also used. Erosion and dilation operators are applied for shrinking and expanding the achieved region. Afterward, the foreground and background samples are achieved. Because the number of these data is large, K-means clustering is used as a sampling technique to restrict computational efforts in the region of interest. K cluster centers for each region are set for training of Support Vector Machine (SVM). SVM, as a powerful binary classifier, is used to segment the interest area from the background. The proposed method is applied on a benchmark dataset consisting of 1000 images and experimental results demonstrate the supremacy of the proposed method to some other foreground-background segmentation methods in terms of ER, VI, GCE, and PRI. Manuscript profile
    Most Viewed Articles

    • Open Access Article

      1 - Privacy Preserving Big Data Mining: Association Rule Hiding
      Golnar Assadat  Afzali shahriyar mohammadi
      Issue 14 , Vol. 4 , Spring 2016
      Data repositories contain sensitive information which must be protected from unauthorized access. Existing data mining techniques can be considered as a privacy threat to sensitive data. Association rule mining is one of the utmost data mining techniques which tries to More
      Data repositories contain sensitive information which must be protected from unauthorized access. Existing data mining techniques can be considered as a privacy threat to sensitive data. Association rule mining is one of the utmost data mining techniques which tries to cover relationships between seemingly unrelated data in a data base.. Association rule hiding is a research area in privacy preserving data mining (PPDM) which addresses a solution for hiding sensitive rules within the data problem. Many researches have be done in this area, but most of them focus on reducing undesired side effect of deleting sensitive association rules in static databases. However, in the age of big data, we confront with dynamic data bases with new data entrance at any time. So, most of existing techniques would not be practical and must be updated in order to be appropriate for these huge volume data bases. In this paper, data anonymization technique is used for association rule hiding, while parallelization and scalability features are also embedded in the proposed model, in order to speed up big data mining process. In this way, instead of removing some instances of an existing important association rule, generalization is used to anonymize items in appropriate level. So, if necessary, we can update important association rules based on the new data entrances. We have conducted some experiments using three datasets in order to evaluate performance of the proposed model in comparison with Max-Min2 and HSCRIL. Experimental results show that the information loss of the proposed model is less than existing researches in this area and this model can be executed in a parallel manner for less execution time Manuscript profile

    • Open Access Article

      2 - Instance Based Sparse Classifier Fusion for Speaker Verification
      Mohammad Hasheminejad Hassan Farsi
      Issue 15 , Vol. 4 , Summer 2016
      This paper focuses on the problem of ensemble classification for text-independent speaker verification. Ensemble classification is an efficient method to improve the performance of the classification system. This method gains the advantage of a set of expert classifiers More
      This paper focuses on the problem of ensemble classification for text-independent speaker verification. Ensemble classification is an efficient method to improve the performance of the classification system. This method gains the advantage of a set of expert classifiers. A speaker verification system gets an input utterance and an identity claim, then verifies the claim in terms of a matching score. This score determines the resemblance of the input utterance and pre-enrolled target speakers. Since there is a variety of information in a speech signal, state-of-the-art speaker verification systems use a set of complementary classifiers to provide a reliable decision about the verification. Such a system receives some scores as input and takes a binary decision: accept or reject the claimed identity. Most of the recent studies on the classifier fusion for speaker verification used a weighted linear combination of the base classifiers. The corresponding weights are estimated using logistic regression. Additional researches have been performed on ensemble classification by adding different regularization terms to the logistic regression formulae. However, there are missing points in this type of ensemble classification, which are the correlation of the base classifiers and the superiority of some base classifiers for each test instance. We address both problems, by an instance based classifier ensemble selection and weight determination method. Our extensive studies on NIST 2004 speaker recognition evaluation (SRE) corpus in terms of EER, minDCF and minCLLR show the effectiveness of the proposed method. Manuscript profile

    • Open Access Article

      3 - COGNISON: A Novel Dynamic Community Detection Algorithm in Social Network
      Hamideh Sadat Cheraghchi Ali Zakerolhossieni
      Issue 14 , Vol. 4 , Spring 2016
      The problem of community detection has a long tradition in data mining area and has many challenging facet, especially when it comes to community detection in time-varying context. While recent studies argue the usability of social science disciplines for modern social More
      The problem of community detection has a long tradition in data mining area and has many challenging facet, especially when it comes to community detection in time-varying context. While recent studies argue the usability of social science disciplines for modern social network analysis, we present a novel dynamic community detection algorithm called COGNISON inspired mainly by social theories. To be specific, we take inspiration from prototype theory and cognitive consistency theory to recognize the best community for each member by formulating community detection algorithm by human analogy disciplines. COGNISON is placed in representative based algorithm category and hints to further fortify the pure mathematical approach to community detection with stabilized social science disciplines. The proposed model is able to determine the proper number of communities by high accuracy in both weighted and binary networks. Comparison with the state of art algorithms proposed for dynamic community discovery in real datasets shows higher performance of this method in different measures of Accuracy, NMI, and Entropy for detecting communities over times. Finally our approach motivates the application of human inspired models in dynamic community detection context and suggest the fruitfulness of the connection of community detection field and social science theories to each other. Manuscript profile

    • Open Access Article

      4 - Node Classification in Social Network by Distributed Learning Automata
      Ahmad Rahnama Zadeh meybodi meybodi Masoud Taheri Kadkhoda
      Issue 18 , Vol. 5 , Spring 2017
      The aim of this article is improving the accuracy of node classification in social network using Distributed Learning Automata (DLA). In the proposed algorithm using a local similarity measure, new relations between nodes are created, then the supposed graph is partitio More
      The aim of this article is improving the accuracy of node classification in social network using Distributed Learning Automata (DLA). In the proposed algorithm using a local similarity measure, new relations between nodes are created, then the supposed graph is partitioned according to the labeled nodes and a network of Distributed Learning Automata is corresponded on each partition. In each partition the maximal spanning tree is determined using DLA. Finally nodes are labeled according to the rewards of DLA. We have tested this algorithm on three real social network datasets, and results show that the expected accuracy of presented algorithm is achieved. Manuscript profile

    • Open Access Article

      5 - A Bio-Inspired Self-configuring Observer/ Controller for Organic Computing Systems
      Ali Tarihi Hassan Haghighi Fereidoon  Shams Aliee
      Issue 15 , Vol. 4 , Summer 2016
      The increase in the complexity of computer systems has led to a vision of systems that can react and adapt to changes. Organic computing is a bio-inspired computing paradigm that applies ideas from nature as solutions to such concerns. This bio-inspiration leads to the More
      The increase in the complexity of computer systems has led to a vision of systems that can react and adapt to changes. Organic computing is a bio-inspired computing paradigm that applies ideas from nature as solutions to such concerns. This bio-inspiration leads to the emergence of life-like properties, called self-* in general which suits them well for pervasive computing. Achievement of these properties in organic computing systems is closely related to a proposed general feedback architecture, called the observer/controller architecture, which supports the mentioned properties through interacting with the system components and keeping their behavior under control. As one of these properties, self-configuration is desirable in the application of organic computing systems as it enables by enabling the adaptation to environmental changes. However, the adaptation in the level of architecture itself has not yet been studied in the literature of organic computing systems. This limits the achievable level of adaptation. In this paper, a self-configuring observer/controller architecture is presented that takes the self-configuration to the architecture level. It enables the system to choose the proper architecture from a variety of possible observer/controller variants available for a specific environment. The validity of the proposed architecture is formally demonstrated. We also show the applicability of this architecture through a known case study. Manuscript profile

    • Open Access Article

      6 - Publication Venue Recommendation Based on Paper’s Title and Co-authors Network
      Ramin Safa Seyed Abolghassem Mirroshandel Soroush Javadi Mohammad Azizi
      Issue 21 , Vol. 6 , Winter 2018
      Information overload has always been a remarkable topic in scientific researches, and one of the available approaches in this field is employing recommender systems. With the spread of these systems in various fields, studies show the need for more attention to applying More
      Information overload has always been a remarkable topic in scientific researches, and one of the available approaches in this field is employing recommender systems. With the spread of these systems in various fields, studies show the need for more attention to applying them in scientific applications. Applying recommender systems to scientific domain, such as paper recommendation, expert recommendation, citation recommendation and reviewer recommendation, are new and developing topics. With the significant growth of the number of scientific events and journals, one of the most important issues is choosing the most suitable venue for publishing papers, and the existence of a tool to accelerate this process is necessary for researchers. Despite the importance of these systems in accelerating the publication process and decreasing possible errors, this problem has been less studied in related works. So in this paper, an efficient approach will be suggested for recommending related conferences or journals for a researcher’s specific paper. In other words, our system will be able to recommend the most suitable venues for publishing a written paper, by means of social network analysis and content-based filtering, according to the researcher’s preferences and the co-authors’ publication history. The results of evaluation using real-world data show acceptable accuracy in venue recommendations. Manuscript profile

    • Open Access Article

      7 - Low-Complexity Iterative Detection for Uplink Multiuser Large-Scale MIMO
      Mojtaba Amiri Mahmoud Ferdosizade Naeiny
      Issue 29 , Vol. 8 , Winter 2020
      In massive Multiple Input Multiple Output (MIMO) or large scale MIMO systems, uplink detection at the Base Station (BS) is a challenging problem due to significant increase of the dimensions in comparison to ordinary MIMO systems. In this letter, a novel iterative metho More
      In massive Multiple Input Multiple Output (MIMO) or large scale MIMO systems, uplink detection at the Base Station (BS) is a challenging problem due to significant increase of the dimensions in comparison to ordinary MIMO systems. In this letter, a novel iterative method is proposed for detection of the transmitted symbols in uplink multiuser massive MIMO systems. Linear detection algorithms such as minimum-mean-square-error (MMSE) and zero-forcing (ZF), are able to achieve the performance of the near optimal detector, when the number of base station (BS) antennas is enough high. But the complexity of linear detectors in Massive MIMO systems is high due to the necessity of the calculation of the inverse of a large dimension matrix. In this paper, we address the problem of reducing the complexity of the MMSE detector for massive MIMO systems. The proposed method is based on Gram Schmidt algorithm, which improves the convergence speed and also provides better error rate than the alternative methods. It will be shown that the complexity order is reduced from O(〖n_t〗^3) to O(〖n_t〗^2), where n_t is the number of users. The proposed method avoids the direct computation of matrix inversion. Simulation results show that the proposed method improves the convergence speed and also it achieves the performance of MMSE detector with considerable lower computational complexity. Manuscript profile

    • Open Access Article

      8 - Short Time Price Forecasting for Electricity Market Based on Hybrid Fuzzy Wavelet Transform and Bacteria Foraging Algorithm
      keyvan Borna Sepideh Palizdar
      Issue 16 , Vol. 4 , Autumn 2016
      Predicting the price of electricity is very important because electricity can not be stored. To this end, parallel methods and adaptive regression have been used in the past. But because dependence on the ambient temperature, there was no good result. In this study, lin More
      Predicting the price of electricity is very important because electricity can not be stored. To this end, parallel methods and adaptive regression have been used in the past. But because dependence on the ambient temperature, there was no good result. In this study, linear prediction methods and neural networks and fuzzy logic have been studied and emulated. An optimized fuzzy-wavelet prediction method is proposed to predict the price of electricity. In this method, in order to have a better prediction, the membership functions of the fuzzy regression along with the type of the wavelet transform filter have been optimized using the E.Coli Bacterial Foraging Optimization Algorithm. Then, to better compare this optimal method with other prediction methods including conventional linear prediction and neural network methods, they were analyzed with the same electricity price data. In fact, our fuzzy-wavelet method has a more desirable solution than previous methods. More precisely by choosing a suitable filter and a multiresolution processing method, the maximum error has improved by 13.6%, and the mean squared error has improved about 17.9%. In comparison with the fuzzy prediction method, our proposed method has a higher computational volume due to the use of wavelet transform as well as double use of fuzzy prediction. Due to the large number of layers and neurons used in it, the neural network method has a much higher computational volume than our fuzzy-wavelet method. Manuscript profile

    • Open Access Article

      9 - DBCACF: A Multidimensional Method for Tourist Recommendation Based on Users’ Demographic, Context and Feedback
      Maral Kolahkaj Ali Harounabadi Alireza Nikravan shalmani Rahim Chinipardaz
      Issue 24 , Vol. 6 , Autumn 2018
      By the advent of some applications in the web 2.0 such as social networks which allow the users to share media, many opportunities have been provided for the tourists to recognize and visit attractive and unfamiliar Areas-of-Interest (AOIs). However, finding the appropr More
      By the advent of some applications in the web 2.0 such as social networks which allow the users to share media, many opportunities have been provided for the tourists to recognize and visit attractive and unfamiliar Areas-of-Interest (AOIs). However, finding the appropriate areas based on user’s preferences is very difficult due to some issues such as huge amount of tourist areas, the limitation of the visiting time, and etc. In addition, the available methods have yet failed to provide accurate tourist’s recommendations based on geo-tagged media because of some problems such as data sparsity, cold start problem, considering two users with different habits as the same (symmetric similarity), and ignoring user’s personal and context information. Therefore, in this paper, a method called “Demographic-Based Context-Aware Collaborative Filtering” (DBCACF) is proposed to investigate the mentioned problems and to develop the Collaborative Filtering (CF) method with providing personalized tourist’s recommendations without users’ explicit requests. DBCACF considers demographic and contextual information in combination with the users' historical visits to overcome the limitations of CF methods in dealing with multi- dimensional data. In addition, a new asymmetric similarity measure is proposed in order to overcome the limitations of symmetric similarity methods. The experimental results on Flickr dataset indicated that the use of demographic and contextual information and the addition of proposed asymmetric scheme to the similarity measure could significantly improve the obtained results compared to other methods which used only user-item ratings and symmetric measures. Manuscript profile

    • Open Access Article

      10 - The Surfer Model with a Hybrid Approach to Ranking the Web Pages
      Javad Paksima Homa  Khajeh
      Issue 15 , Vol. 4 , Summer 2016
      Users who seek results pertaining to their queries are at the first place. To meet users’ needs, thousands of webpages must be ranked. This requires an efficient algorithm to place the relevant webpages at first ranks. Regarding information retrieval, it is highly impor More
      Users who seek results pertaining to their queries are at the first place. To meet users’ needs, thousands of webpages must be ranked. This requires an efficient algorithm to place the relevant webpages at first ranks. Regarding information retrieval, it is highly important to design a ranking algorithm to provide the results pertaining to user’s query due to the great deal of information on the World Wide Web. In this paper, a ranking method is proposed with a hybrid approach, which considers the content and connections of pages. The proposed model is a smart surfer that passes or hops from the current page to one of the externally linked pages with respect to their content. A probability, which is obtained using the learning automata along with content and links to pages, is used to select a webpage to hop. For a transition to another page, the content of pages linked to it are used. As the surfer moves about the pages, the PageRank score of a page is recursively calculated. Two standard datasets named TD2003 and TD2004 were used to evaluate and investigate the proposed method. They are the subsets of dataset LETOR3. The results indicated the superior performance of the proposed approach over other methods introduced in this area. Manuscript profile
    Upcoming Articles
  • Affiliated to
    Iranian Academic Center for Education,Culture and Research
    Manager-in-Charge
    Habibollah Asghari (Research Institute for Information and Communication Technology, ACECR)
    Editor-in-Chief
    Masood Shafiei (Amirkabir University)
    Executive Manager
    Shirin Gilaki (Research Institute for Information and Communication Technology, ACECR)
    Editorial Board
    Abdolali Abdipour (Amirkabir University of Technology) Aliakbar Jalali (University of Maryland) Ali Mohammad Djafari (Le Centre National de la Recherche Scientifique (CNRS)) Alireza Montazemi (McMaster University) Hamidreza Sadegh Mohammadi (ACECR) Mahmoud Moghavemi (University of Malaya) Mehrnoush Shamsfard (Shahid Beheshti University) Omid Mahdi Ebadati (Kharazmi University) Ramazan Ali Sadeghzadeh (K. N. Toosi University of Technology) Rahim Saeidi (eaglegenomics) Saeed Ghazimaghrebi (Islamic Azad University, Shahr-e-Rey) Shaban Elahi (Tarbiat Modaress University) Shohreh Kasaei (Sharif University of Technology) Zabih Ghasemlooy ( University of Northumbria )
    Print ISSN: 2322-1437
    Online ISSN:2345-2773
    Email
    infojist@gmail.com , info.jist@acecr.org
    Address
    No.5, Saeedi Alley, Kalej Intersection., Enghelab Ave., Tehran, Iran.
    Phone
    +98 21 88930150

    Search

    Statistics

    Number of Volumes 11
    Number of Issues 42
    Printed Articles 312
    Number of Authors 2546
    Article Views 1046203
    Article Downloads 246137
    Number of Submitted Articles 1497
    Number of Rejected Articles 895
    Number of Accepted Articles 339
    Acceptance 22 %
    Time to Accept(day) 178
    Reviewer Count 868
    Last Update 2/6/2023